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Modeling in Chemical Engineering* 

Jaap van Brakel 

Abstract: Models underlying the use of similarity considerations, dimension-
less numbers, and dimensional analysis in chemical engineering are discussed. 
Special attention is given to the many levels at which models and ceteris paribus 
conditions play a role and to the modeling of initial and boundary conditions. 
It is shown that both the laws or dimensionless number correlations and the 
systems to which they apply are models. More generally, no matter which 
model or description one picks out, what is being modeled is itself a model of 
something else. Instead of saying that the artifact S models the given B, it is 
therefore better to say that S and B jointly make up B and S. 

Keywords: modeling, chemical engineering, similarity considerations, dimen-
sional analysis, ceteris paribus conditions. 

1. Similarity considerations and dimensionless numbers 
In many cases, the behavior of operating units or devices studied in chemical 
engineering science can be predicted by test procedures using a conveniently 
sized scale model. The interpretation of test data from such scale-model tests 
and application to full-sized equipment depends upon several criteria of simi-
larity. For example, geometric similarity exists when all counterpart length 
dimensions of the device bear a constant ratio. Thermal similarity exists if dif-
ferences of temperature between particular points in one system bear a fixed 
ratio to difference of temperature between the corresponding points in the 
other system. Many ceteris paribus conditions enter such similarity considera-
tions when applied to actual cases. 
 As a simple example consider two lengths of smooth tubing, one of which 
is 1 cm in diameter and 100 cm long (the model), and the other 1 m in diame-
ter and 100 m long (the prototype). In general, the model and the prototype 
will display similar behavior if, for the same boundary conditions, the relevant 
dimensionless groups such as the Reynolds number have the same value for 
model and prototype. Examples of dimensionless numbers and the dimen-
sional variables that enter into them are given in Tables 1 and 2. 
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Table 1. Examples of dimensionless numbers; see Table 2 for 
dimensional variables used. 

Re Reynolds number ratio of inertia and viscous forces ρdv/η 

Fr Froude number ratio of inertia and gravity forces v2/gd 

Nu Nusselt number ratio of total and molecular heat transfer hd/λ 

Sh Sherwood number ratio of total and molecular mass transfer kd/D 

Pr Prandtl number ratio of molecular and momentum heat 
transfer 

ηC/λ 

Sc Schmidt number ratio of molecular and momentum mass 
transfer 

η/ρD 

Fo Fourier number dimensionless time characterising heat 
flux into a body 

λt/ρCd2 

ƒ Fanning friction fac-
tor 

dimensionless pressure drop d∆P/2Lρv2 

j
H

 Colburn j factor dimensionless heat transfer coefficient NuRe-1Pr-0.33 

j
M

  Colburn j factor dimensionless mass transfer coefficient ShRe-1Sc-0.33 

 

Table 2. Dimensional variables used in dimensionless numbers 
and equations; dimensions: [L] length; [t] time; [M] mass; [T] 
temperature; [H] heat. 

real numbers a, b, c [-] 

heat capacity C [H/MT] 

diameter d [L] 

molecular diffusion coefficient D [L2/t] 

gravitational acceleration g [L/t2] 

heat transfer coefficient h [H/tL2T] 

mass transfer coefficient k [L/t] 

permeability of porous medium K [L/t] 

length L [L] 

pressure difference ∆P [M/Lt2] 

overall liquid velocity q [L/t] 

time t [t] 

Cartesian coordinates x, y, z [L] 

velocity v [L/t] 

viscosity η [M/Lt] 

porosity ε [L3/L3] 

thermal conductivity λ [H/tLT] 

cake resistance Θ [t/L] 
density ρ [M/L3] 
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 The concept of similarity extends to many characteristics besides geome-
try. For example, in aeronautical engineering it may be specified that the mass 
distribution in a model be similar to that in the prototype or that the ratio of 
stiffness of homologous cross sections of a prototype wing and a small-scale 
model must be constant. Often scale effects are difficult to eliminate. For ex-
ample, the surface of a material that is relatively smooth on the prototype 
scale may be ‘rough’ on the model scale. In chemical engineering, in addition 
to dimensionless numbers for fluid flow, dimensionless numbers for heat and 
mass transfer are of crucial importance. A simple example illustrating their 
use is to consider roasting turkeys. If two geometrically similar turkeys at ini-
tial temperature T0 are cooked at a given surface temperature T1 to the same 
dimensionless temperature distribution, then the dimensionless time, or Fou-
rier number, with d the ‘characteristic’ diameter of a turkey, will be the same 
for both turkeys (if some ‘reasonable’ assumptions are fulfilled). This is the 
basis of roasting instructions for turkeys in cookery books and in the pro-
gramming of modern ovens. Because of the temperature dependence of sub-
stance properties like density, ρ, or viscosity, η, to achieve thermal similarity 
is more difficult than to achieve kinematic similarity. Comparison across dif-
ferent media is only possible if the physical characteristics of the two media 
have a similar temperature dependence. 
 Historically, similarity considerations and dimensionless numbers used in 
modeling engineering applications are closely tied to the method of dimen-
sional analysis. Using dimensional analysis, systems or devices can be rea-
soned about without explicit knowledge of the regularities that govern them 
(the ‘laws’ that allegedly apply to the system or device), requiring only 
knowledge of the relevant variables and their dimensional representation. Of 
course knowledge of the relevant variables will often be based on knowing 
(or guessing) which phenomenological equations or mechanisms will play a 
role in the problem at hand. Although dimensional analysis is now used much 
less in chemical engineering than a few decades ago, it is of (historical) inter-
est because it involves a large number of intercalated models or ceteris paribus 
assumptions from the most ‘fundamental’ to the most ‘applied’. Moreover, 
though the number of models for which numerical solutions of the (alleged-
ly) governing equations under the prevailing boundary conditions can be giv-
en has increased substantially, this does not mean that dimensionless num-
bers are disappearing from chemical engineering science and practice. In fact, 
new dimensionless numbers are still being added. For example, the (dimen-
sionless) agitation cavitation number (for multiple-impeller stirred tank reac-
tors with boiling liquids) was introduced in the 1990s. Let me give two more 
detailed examples, from recent issues of The Canadian Journal of Chemical 
Engineering, of the use of dimensionless numbers and how they are tied in 
with model considerations. 
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 Liu, Fryer, and Pain (1999) consider the “influence of particle-specific 
gravity and particle shape on the averaged axial velocity of nearly neutrally 
buoyant particles in horizontal pipes”. This is a problem situated in the con-
text of modeling two phase flow (such as hydraulic transport of particulate 
solids). Note that the quotation (actually the title of their article) already 
stipulates restriction to a model. They attempt to overcome limitations of 
earlier purely empirical work by setting-up a proper force-balance model for 
the system (taking into account both particle specific gravity and particle 
shape). However, the equation they derive between the average particle veloc-
ity and the modified particle Froude number still contains two constants 
which had to be determined by regression “based on all the over 500 acquired 
experimental data”. Moreover they can only provide approximate numerical 
solutions for spherical, cylindrical, disk and cubic particles, i.e. for models of 
actual particles, characterized using a shape factor. Finally, they list several 
parameters that should be included in a fuller description. After having advo-
cated that models for the curve fitting constants in their equations should be 
investigated, the last sentence of their article is: “The study of single particles 
could be a first step towards investigations of multiple particle flows for in-
dustrial use.” 
 Wang et al. (1999) use a multiple linear regression technique to model the 
airside performance of herringbone fin-and-tube heat exchangers in wet con-
ditions. They present their results in terms of the Colburn j and Fanning fric-
tion factors (see Table 1 for these dimensionless numbers). The performance 
of the (highly streamlined) geometry is so complex that no single equation 
can describe the dependence of the heat transfer and friction on the Reynolds 
number and the eight parameters characterizing the geometry of the system. 
The curve-fitted correlation for the friction factor contains four constants, 
six dimensionless numbers, and five variables. The latter are powers of dimen-
sionless numbers, all of which depend on the Reynolds number in complex 
ways: equations with up to four terms, containing natural logarithms in vari-
ous places, several occurrences of the Reynolds number, as well as dimension-
less numbers characterizing the geometry of the system.  
 In the sections that follow, I have restricted myself to the minimum num-
ber of variables. This means that occasionally my equations look slightly dif-
ferent from those in practice. For example, instead of the kinematic viscosity, 
I write ρ/η. This is innocent. Other simplifications are more problematic. 
Tricky variables I use include, D, the coefficient for molecular diffusion. It is 
not only dependent on the temperature, but, depending how it is defined, de-
pends on the bulk density and the concentration of the components (which 
again can be defined in various ways). In addition, I exclude specifications of 
how to evaluate substance properties (different definitions of averages, ‘bulk’, 
‘at the film temperature’), various ways of defining the velocity (‘average’, 
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‘bulk’, ‘film’, ‘at infinity’, ‘approach velocity’), or different ways of taking in-
to account a temperature gradient. Note that each of these specifications ex-
emplify the ubiquity of models and ceteris paribus conditions.  

2. Dimensional analysis 
The method of dimensional analysis has its origin in the principle of simili-
tude referred to by Newton. Fourier was the first to apply the geometrical 
concept of dimension to physical magnitudes. He recognized the existence of 
dimensionless groups in his equations, but did not see most of the conse-
quences that were drawn out later. Maxwell acknowledged the work of Fouri-
er, expressed the requirement of dimensional homogeneity more precisely, 
used similarity considerations, and introduced the modern notation for di-
mensions, using capital letters in brackets (cf. Table 2). Lord Rayleigh made 
extensive use of the method of dimensional analysis in his Theory of Sound 
and contributed to many discussions on applying dimensional analysis to flu-
id flow. One of the first dimensionless numbers to gain widespread ac-
ceptance among physicists and engineers was the Reynolds number (in the 
1880s).  
 Between 1890 and 1920 the ‘method of dimension’ or the ‘procedure of 
dimensional analysis’ was further developed. In its ‘final’ form it can be sum-
marized according to the following steps (Bridgman 1931, Palacios 1964): 

1. Using previous experience, decide on the general nature of the problem, 
including a judgement on which systems may be considered as similar ‘in 
the relevant sense’. 

2. Enumerate all dimensional variables that enter the ‘fundamental’ equa-
tions assumed to describe the phenomena (whether these equations are 
known or not, whether the boundary conditions to solve them can be 
specified or not). 

3. Enumerate all dimensional ‘constants’ (i.e. system constants such as den-
sity or the acceleration of gravity) that occur in these equations (but not 
universal constants like the Planck constant or the velocity of light). 

4. Select the most suitable fundamental magnitudes or units (such as 
[Length] and [Time]). 

5. Write the dimensions of all variables in terms of fundamental units – the 
latter number should be chosen to be as large as possible without intro-
ducing more dimensional system constants. 

6. Re-arrange all dimensional variables and constants into dimensionless 
groups – choose dimensionless groups, Π1, Π2, Π3, …, such that variables 
that one is particularly interested in stand conspicuously by themselves. 
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The Π-theorem states that the number of dimensionless groups resulting 
from this procedure will be equal to the number of variables n (obtained in 
step 2 and 3), minus the number of dimensions p (corresponding to the 
number of fundamental units, specified in step 4). If two systems are similar 
in the relevant sense (i.e. in terms of the mechanisms described by the varia-
bles occurring in the Πs), then corresponding Πs must be the same in each 
case. In its most general form this can be written as: 

Φ (Π1, Π2, Π3, …) = 0 (1) 

where Π1, Π2, Π3, … represent the dimensionless groups of variables – hence 
called the ‘Π-theorem’. Dimensional analysis does not indicate extraneous, 
omitted, or redundant variables (though it may offer some hints as to errors 
in reasoning). It only works if based on thorough familiarity with the relevant 
parameters. In general and often in practice there are so many Πs influencing 
a phenomenon that it is impossible to satisfy all the requirements of similari-
ty at the same time – unless, contrary to one’s aims, the systems being com-
pared are completely identical. Hence choosing a limited number of Πs in-
volves choosing a ceteris paribus model.  
 Buckingham popularized the method in the United States and his name is 
usually associated with the Π-theorem, though it was already derived by 
Vaschy in 1892. At the beginning of the 20th century, many physicists and 
engineers were implicitly using it. The subject was more or less consolidated 
by Bridgman (1931), in a series of five lectures presented at Harvard Univer-
sity.  
 Attempts have been made occasionally to apply dimensional analysis in 
social sciences, but with little success. As Bridgman pointed out, dimensional 
analysis can only be applied reliably to systems whose ‘fundamental’ laws 
have been formulated. If there are as many dimensional variables as system 
‘constants’ (the typical situation in social science), dimensional analysis has 
no information to give. 

3. Dimensional analysis in chemical engineering 
Knowledge of combined mass, heat, and momentum transfer is crucial to 
chemical engineering. In studying these transport phenomena, chemical engi-
neering makes extensive use of empirical correlations that are equations made 
up of dimensionless groups of variables raised to various powers. Here is an 
example: 
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There are different ways to obtain the form of correlations such as Eq. (2): 
[i] by dimensional analysis, [ii] by ‘un-dimensionalizing’ the differential 
equations for heat, mass, and momentum transfer within the boundary layers, 
and [iii] by listing the transport mechanisms involved – if there are n mecha-
nisms, they can be described by n-1 dimensionless numbers. Textbooks differ 
in the emphasis they put on these three methods and dimensional analysis in 
the narrow sense has been on the retreat in the past decades. However, the 
different methods draw on the same principles. 
 To see how an equation such as (2) is obtained by using dimensional anal-
ysis, consider mass transfer between a bubble or a droplet of a fluid dispersed 
in another fluid – for example when a fluid with density ρ and viscosity η is 
flowing with average velocity v along a droplet with diameter d and mass 
transfer is taking place to (or from) the bulk of the fluid from (or to) the sur-
face of the droplet by molecular diffusion of a reactant of which the diffusion 
coefficient in the fluid is D.  
 Then it may be suggested that the partial mass transfer coefficient, k, is 
dependent solely on the parameters mentioned, or: 

k = Φ(v, ρ, η, d, D) (3) 

Assuming further that Eq. (3) may be expressed as a power series with a suf-
ficient number of constants, we can write: 

k = c1 v
a ρb dc ηe Df + c2 v

g ρh di ηj Dk + … (4) 

The constants in Eq. (4) are dimensionless by definition; therefore, to be di-
mensionally consistent, each term in the series must have the same dimen-
sions as the term on the left side of the equation. In order for the dimensions 
to be homogeneous, the following equations apply to the exponents (for the 
three dimensions length, time, and mass respectively): 

+ 1 – a + 3b – c + e – 2f = 0 (5) 

– 1 + a + e + f = 0 (6) 

– b – e = 0 (7) 

Since there are three equations and five unknowns, we obtain 

k = c1 (v)a (ρ)a-1+f (d)a-1 (η)1-a-f (D)f (8) 

or, by rearranging the variables into dimensionless numbers: 
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or:  

Sh = c1RemScn (10) 

with Sh the Sherwood number, Re the Reynolds number, and Sc the Schmidt 
number. Eqs. (3) and (4) represent Step 2-4, Eqs. (5-7) and (8) Step 5 and Eq. 
(9) Step 6 in the ‘procedure’ of dimensional analysis (cf. Sect. 2). 
 Equation (9) is in a form made up of several groups of variables, each 
group of which is in itself dimensionless. Such dimensionless numbers (the 
Π’s in the Π-theorem) can often be read as a ratio of two transport mecha-
nisms (cf. Table 1). The equation is a restatement of Eq. (3) with the neces-
sary condition of dimensional consistency applied. The condition of dimen-
sional consistency automatically brings into being a relationship among the 
exponents a, b, c, e, and f in Eq. (4) that must be satisfied in any dimensional-
ly consistent equation. During the derivation, no conditions other than Eq. 
(4) were applied to the exponents. Therefore, after dimensional analysis, the 
remaining exponents may be constant or variable, real or imaginary, positive 
or negative and may be functions of any of the dimensionless groups in the 
equation. 
 The parameters c1, m, and n in Eq. (10) can be evaluated only from exper-
imental data or may be ‘borrowed’ from related data using similarity consid-
erations, For example Eq. (2) written for mass transfer, actually ‘uses’ the pa-
rameters c1, m, and n as determined for heat transfer: 
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0.62.0 
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or Nu = 2.0 + 0.6Re0.5Pr0.33, with Nu the Nusselt number and Pr the Prandtl 
number. The number 2.0 is added because for Re = 0 (no flow), theoretical 
analysis yields Nu = 2.0 
 Note that the Reynolds number occurs in both Eqs. (2) and (11); the heat 
transfer coefficients h and λ in the Nusselt number correspond to the mass 
transfer coefficients k and D in the Sherwood number and similarly for the 
Prandtl and Schmidt number. Hence it is assumed that there is an analogy be-
tween heat and mass transfer. If the phenomenological equations for heat and 
mass transfer have the same mathematical form and the initial and boundary 
conditions are the same, then this may be the case. Because momentum trans-
fer is vectorial, there can only be an analogy between all three transport phe-
nomena if momentum transfer can be considered unidimensional (e.g. for 
momentum transfer in cylindrical tubes or along a flat plate). 
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 Eq. (11) was obtained for a ‘simple’ geometry: a spherical droplet of diam-
eter d surrounded by an ‘infinitely’ extended flowing fluid. Using ‘character-
istic’ length parameters, the approach is extended to more complex geome-
tries, for example d being the diameter of an equivalent sphere for packed 
beds or d being the film thickness for a falling film – cf. the characteristic tur-
key diameter and the particle modified Froude number mentioned in section 
1. 

4. Presuppositions of dimensional analysis 
Many assumptions underlie the method of dimensional analysis and the use 
of dimensionless numbers. First, it is assumed that each magnitude possesses 
a dimension proper to itself, which can be identified with classes of scales that 
are connected via linear transformations. It is commonly said that dimensions 
are always expressible as a product of powers and that the indices are always 
small integers or simple fractions. However, in chemical and other engineer-
ing disciplines, equations with non-integral exponents are common. For ex-
ample, according to the Ostwald-de Waele model for non-Newtonian behav-
ior of liquids, the viscosity is expressed as follows: 

1−

=
a

x

y
c

d

dvη  (12) 

The parameters c and a have to be determined for each liquid. For example 
(Bird, Stewart & Lightfoot 1960, p. 13), for 10% napalm in kerosene 
c = 0.0893 (lbfsecaft-2) and a = 0.520 (dimensionless). Though this example 
has been quoted from a textbook on transport phenomena of 1960, the pow-
er law for non-Newtonian fluids is still ‘the best in town’ and has not been 
replaced by more fundamental approaches. 
 A slightly different example is the ‘filtration equation’: 

Θη

b

a

P
q

∆−= 1
 (13) 

with q the fluid flow per unit area, ∆P the pressure difference, Θ the ‘cake re-
sistance’ and the exponents a and b real numbers characterizing ‘the system’. 
The threat of ‘broken’ dimensions is easily removed in this case, by making 
the variables raised to powers of real numbers dimensionless by introducing 
reference values (for some standard or initial situation): 
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Any correlation between quantified parameters can be made dimensionally 
invariant, even dimensionally homogeneous, by inserting enough dimensional 
constants, as Eqs. (13) and (14) show.  
 Again this example is taken from a 1960s text book of unit operations, 
and again the most up to date approaches to cake filtration still use power 
laws, though the powers have changed towards the ‘constitutional’ parame-
ters underlying the cake resistance Θ. For example, Lee et al. (2000) present a 
model of cake filtration that is only marginally different from models used 50 
years before, though it tries to take into account the compactibility of the fil-
ter cake. Earlier approaches assume an isotropic, stationary porous matrix and 
Lee et al. present a model in which the latter assumption is dropped. But they 
still assume ‘that the gravity force and inertial terms can be neglected and that 
the solid particles are not deformable’. Further they assume that the porosity, 
ε, of the cake only depends on the compression pressure and that the com-
pactibiltiy of the cake can be described by a ‘solidosity’, 1-ε, which is a 
smooth function of time and space. Then they can write the governing differ-
ential equations for the model. However to relate the model equations to ex-
perimental data, they still need what they call ‘constitutive equations’ for the 
permeability, K, and the porosity, ε, for which they use power laws similar to 
Eq. (13). The final dimensionless equations contain five dimensionless num-
bers. 
 A second assumption underlying dimensional analysis is the choice of 
fundamental units (dimensions) or primary magnitudes (quantities). Table 2 
is based on five ‘fundamentals’ or primary magnitudes. There is no solid justi-
fication for the choice – any number from 1 to 9 has been proposed in the 
context of dimensional analysis. Some say that the choice is arbitrary or de-
pends on the particular application. Sometimes it is required that there is an 
operationally defined procedure of physical addition or concatenation for 
primary magnitudes (as in adding two masses by putting both of them in the 
same pan of a balance). If the latter condition does not apply, the status as 
primary magnitude remains disputed, temperature being the prime example. 
Secondary magnitudes are defined in terms of the primary magnitudes. How-
ever, there is no necessary connection between the units of derived and fun-
damental magnitudes and the distinction between the two is not absolute; for 
example, density could be made a primary magnitude. Finally, the number of 
fundamental units used in dimensional analysis is not necessarily the same as 
the minimum number of primary magnitudes to define all other physical 
magnitudes. 



 Modeling in Chemical Engineering 111 

 

 The Π-theorem implies that one gets the most information out of dimen-
sional analysis if one lists the smallest number of variables significant for the 
problem at hand and to have the largest number of acceptable fundamentals. 
Hence there have been proposals for legitimate means to increase the number 
of fundamentals. For example, for the flow of liquids through tubes or the 
flow of electricity along wires the length and the cross-sectional area can be 
considered independent variables and may be considered as separate ‘funda-
mentals’. One may also conceive of mass in two ways: related only to the in-
ertial property of mass or to do merely with occupying space. In addition, it 
can sometimes be useful to regard the number of atoms as having dimensions 
different from a pure number. However, such choices of extra parameters are 
clearly guided by prior experience with the phenomena at hand. 
 The use of dimensionless number correlations, obtained by dimensional 
analysis or otherwise, further rests on the assumption that implicit functions 
characterizing the physical situation be complete, i.e. that all relevant dimen-
sional system constants and variables have been listed. This involves a judge-
ment of which parameters/mechanisms are not relevant. As an example con-
sider some of the assumptions made in proposing an empirical correlation be-
tween the Fanning friction factor, ƒ, and the Reynolds number, Re, for flow 
in a cylindrical pipe: 

• It is assumed that the solid is rigid and does not interact with the fluid. 
• Pipes are assumed to be smooth; if surface roughness is taken into ac-

count, a plethora of proposals of how to model it pops up. 
• Existing correlation charts for the dependence of ƒ on Re only apply to 

long pipes with an ‘established regime of flow’; otherwise, the ratio of 
the length and the diameter of the tube enters the equations as a dimen-
sionless number. 

• In closed conduits at very high velocities or with rapidly varying pres-
sures, ƒ depends on the Mach or Cauchy number (adding the acoustic ve-
locity as a variable). 

• In open channels gravity waves make ƒ dependent on the Froude num-
ber. 

• At very low velocities in shallow open troughs the Weber number (ratio 
of the inertia and surface tension forces) might play up. 

• Temperature differences between fluid and pipe wall may have an effect 
on the shear stresses.  

• The usual correlations only apply to ‘simple fluids’, not to ‘queer materi-
als like greases, muds, cement slurries’. 

• The behavior of a system that is actually unstable cannot be completely 
predicted as this depends on random disturbances – chemical engineers 
have always known about chaos theory. 
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Of course ceteris paribus conditions are not restricted to dimensional analysis, 
but apply to the derivation of ‘theoretical’ equations as well. By taking a mo-
mentum balance over a section of a cylindrical tube, one obtains the Hagen-
Poiseuille equation: 

L

dP
q

2

2η
∆=  (15) 

This equation is valid given how the model of a cylindrical tube has been 
specified in the theoretical context, but numerous ceteris paribus conditions 
emerge if it is to be used for real world cases. Some of the ceteris paribus con-
ditions involved in deriving the Hagen-Poiseuille equation are:  

• The flow is laminar (i.e. the Reynolds number is less than about 2100). 
• The density is constant (‘incompressible flow’). 
• The flow is independent of time (‘steady state’). 
• The fluid is Newtonian. 
• End effects are neglected. If the section of pipe of interest includes the 

entrance region, a correction must be applied. 
• The fluid behaves as a continuum – this assumption is valid except if the 

molecular free path is comparable to or greater than the tube diameter. 
• There is no slip at the wall (no tangential motion of the fluid relative to 

the wall). 
• The wall is impermeable (no motion perpendicular to the wall). 

Of course one can move up higher on the theoretical ladder and demand a 
solution of the full Navier-Stokes equations, and so on. However, this does 
not make the ceteris paribus conditions go away. 
 A special problem for dimensional analysis are dimensionless magnitudes, 
in particular shape factors such as the ratio of the length and diameter of a 
pipe, the relative roughness of a surface, the particle shape factor, or the tor-
tuosity of pores in a packed bed reactor. For such shape factors there is no 
work to do in dimensional analysis. They occur in the list of relevant parame-
ters when the problem is formulated and move straight to the resulting equa-
tion which states the relation between dimensionless numbers. Moreover, 
such shape factors only take on ‘theoretical’ values for idealized geometric 
models. No matter how sophisticated the theoretical framework and no mat-
ter how powerful the numerical techniques to solve complicated sets of dif-
ferential equations, they will always apply to strongly idealized initial and 
boundary conditions. 
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5. The model of dimensional analysis 
A comparison with definitions of various types of models suggests not only 
that a whole variety of models are used in dimensional analysis, but that these 
model types themselves function as models in the sense of ideal types. At-
tempts to make definitive decisions as to what type of models are used to 
model flow in a pipe or heat and mass transfer in a chemical reactor are spuri-
ous: similarities and differences crop up and disappear. Every S and B identi-
fied as figuring in arguments of the ‘S is a model of B’ relation becomes fluid 
on close examination, indicating a host of other models.  
 Each of the assumptions of dimensional analysis introduces its own mod-
els or ceteris paribus conditions. First, there are a number of background as-
sumptions (models) that apply to all contexts where measurement takes 
place, in particular a measurement theory (consisting of axioms and opera-
tional definitions) for each of the relevant magnitudes, the choice of funda-
mental units, and the requirement that all equations containing magnitudes 
have to be dimensionally invariant. The Π-theorem, which might be seen as 
the essence of dimensionless number modeling, draws on these background 
models and two more specific assumptions, which it shares with more theo-
retical approaches: 

• First, the ceteris paribus assumption or model that all relevant dimension-
al system constants and variables have been listed. At a slightly more the-
oretical level this is the assumption of listing all the relevant phenomeno-
logical equations for the problem on hand.  

• Secondly, the idealization or modeling of the initial and boundary condi-
tions, which makes them suitable for mathematical treatment. For di-
mensional analysis in chemical engineering, the most prototypical models 
are concerned with idealized geometries and the use of shape factors. But 
there are also ceteris paribus conditions such as ‘the inner wall of the ves-
sel is chemically inert’ or ‘barring the presence of surfactants’. In addi-
tion, there is the use of analogical modeling in the similarity considera-
tions, as when the (approximate) analogy of heat, mass, and momentum 
transfer is exploited. 

Note once more that dimensional analysis has no grip on shape factors: they 
are already dimensionless numbers. Neither are more theoretical approaches 
of much help to deal with real life initial and boundary conditions. Numerical 
solutions of phenomenological equations are only possible for the simplest 
geometries. In complex cases multiple regression scaling techniques are used 
which choose the relevant dimensionless numbers on the same basis as is ad-
vocated in ‘pure’ dimensional analysis. The increased power of these ‘ab ini-
tio’ approaches cum curve fitting techniques have ‘made true’ the earlier ob-
servation that “the exponents [of dimensionless numbers] may be constant or 
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variable, real or imaginary, positive or negative and may be functions of any 
of the dimensionless groups in the equation”, as the example of Wang et al. 
(1999) mentioned in the first section illustrates. When dimensional analysis 
was still widely used, this proviso was not very prominent: the best one could 
compute was power laws with ‘simple’ exponential powers, such as 0.33, not 
exponential powers which themselves are equations containing numerous di-
mensionless numbers. 
 In the past few decades significant advances have been made toward ‘ab 
initio’ design in chemical engineering. Complex sets of phenomenological 
equations can be numerically solved for relatively complex boundary condi-
tions. However, note that the design of equipment has gone hand in hand 
with finding solutions for the equations. For example, Satheesh, Chhabra and 
Eswaran (1999) have provided a numerical solution of the complete Navier-
Stokes equations “describing the steady flow of incompressible Newtonian 
fluids normal to an array of long cylinders”, which they say “is an idealization 
of many industrially important processes”. There is no doubt that more often 
fundamental equations can be used than twenty or forty years ago, but note 
that [i] the solutions are numerical, not analytic, [ii] they apply to a model or 
idealization, [iii] which is approached in some industrial processes by making 
practice more streamlined.  
 In contrast, for real world systems, even the most ‘simple’ sort of prob-
lems remains unsolvable. Maxey Flats (Kentucky, U.S.A.) is the world’s larg-
est commercial storage place for radioactive waste of low intensity. The man-
agement consortium said in 1963, when the site was opened, that it would 
take plutonium 24,000 years to get half an inch outside the borders of the site 
(i.e. into the soil outside the storage site). Less than ten years later, the plu-
tonium was already two miles away from the site. In retrospect, it turned out 
to be impossible to make any sensible models of the boundary conditions 
under which the phenomenological equations concerning the relevant diffu-
sivities and permeabilities had to be applied (Shrader-Frechette 1997). If in 
1963 the solution of the complete Navier-Stokes equation “describing the 
steady flow of incompressible Newtonian fluids normal to an array of long 
cylinders” and similar ideal geometries would have been available, it would 
have made no difference for the prediction of possible leakage from the Max-
ey Flats site, because the absence of an appropriate model – no better ‘ab ini-
tio’ methods applied to simple (inappropriate) models – thwart description of 
the unmodeled world. 
 Elsewhere I have argued (van Brakel 2000), following the lead of Cart-
wright (1999) and others, that all laws and models are ceteris paribus and that 
the relation between a model and what it allegedly represents is symmetrical: 
fitting the model is a matter of mutual attunement of both model and reality. 
Cartwright has shown that the most fundamental laws of physics only apply 
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to model situations and are always ceteris paribus for concrete systems. Any 
law or theory abstracts from ‘ordinary’ contexts; hence it cannot be strictly 
true for real (actual) systems. However, phenomenological equations too are 
ceteris paribus. Moreover, the example of dimensional analysis shows that if 
one moves further in the direction of ‘real systems’, the phenomenological 
equations take on the status of ‘fundamental theories’. Whether there are any 
Newtonian fluids in the real world is an open question and numerous other 
ceteris paribus conditions are introduced when applying phenomenological 
equations to flow in a cylindrical tube. Moreover, this cylindrical tube is itself 
an artifact. Because it has been made to narrow specifications, phenomeno-
logical equations can be applied to it under relatively simple boundary condi-
tions. Both the laws or dimensionless number correlations and the model sit-
uations to which they apply are models because both are subject to ceteris pa-
ribus conditions. Further, these model situations are constructed by drawing 
on a plethora of other background models. What we have is a world of inter-
related models, where no matter which model or description one picks out 
and tries to say what it is that is being modeled, what is being modeled is it-
self a model of something else. Instead of saying that the artifact S models the 
given B, it is better to say that S and B jointly make up B and S.  

Note 
* This paper is a much shortened version of chapter 7 of van Brakel 2000. 
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