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Neural network models 
of protein domain evolution 
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Abstract: Protein domains are complex adaptive systems, and here a novel 
procedure is presented that models the evolution of new functional sites with-
in stable domain folds using neural networks. Neural networks, which were 
originally developed in cognitive science for the modeling of brain functions, 
can provide a fruitful methodology for the study of complex systems in gen-
eral. Ethical implications of developing complex systems models of biomole-
cules are discussed, with particular reference to molecular medicine.  
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Introduction 
Everywhere in nature, matter organizes itself into complex patterns and 
structures. This self-organizing tendency of matter culminates in biological 
organisms and their constituent macromolecules, the most complex chemical 
entities known to us. Proteins are by far the most abundant and diverse class 
of biomolecules and mediate the vast majority of biochemical processes. With 
the recent explosion of protein sequence data from all three kingdoms of life, 
the archea, prokarya and eukarya, we have come to even more fully appreciate 
the modular nature of proteins, and the complex ways in which their func-
tional and structural units, protein domains, are conserved and recombined 
during evolution (Fig. 1). Domains are thermodynamically stable and fold 
independently within the context of the whole protein. Novelty in protein 
function often arises as a result of the gain or loss of domains, or by re-
shuffling existing domains along the linear amino acid sequence. Thus, pro-
tein domains can arguably be seen as stable units of evolution.  
 New domain functions evolve within the constraints of maintaining 
thermodynamic stability and autonomous folding capability. This gives rise 
to a complex interplay of molecular organization and evolutionary dynamics, 
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which is still a largely unexplored area of research. My aim in the present pa-
per is to approach this problem from a perspective informed by recent devel-
opments in complexity theory. This work employs distributed representation 
by neural networks in building relational models of protein domain evolu-
tion. I will also address the explicit ethical dimension inherent in choosing 
and developing models in biomedical science. Ethical implications of develop-
ing complex systems models of biomolecules are discussed on this premise.  
 

 
           Immunoglobulin domain 8fab Zinc finger 1zaa         

 
     Eukaryotic protein kinase domain 1apm EGF-like domain 1apo        

 
            WD domain 1gp2 EF hand 1osa           

Figure 1: Cartoons of some widely found protein domains. Al-
pha helices are shown as barrels, beta-sheets as arrows, and loop 
regions as lines. Protein Data Bank (PDB) identifiers of the 
crystallographic structures are given following the domain 
names.  
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1. Protein domains are complex adaptive systems 
Can protein domains legitimately be classed as complex adaptive systems? At 
present, a consensus on the characteristics of complex systems is still elusive, 
both qualitatively and quantitatively, however, the following characteristics 
have found general agreement (Cilliers 1998, p. 3) and are present in protein 
domains:  
 (1) Complex systems consist of a large number of elements. At the atom lev-
el, protein domains typically consist of thousands of elements. At a higher 
level of description, the amino acid level, they are comprised of up to several 
hundred elements. Whilst description and modeling at the atom level is com-
putationally intractable at present, domain systems can be modeled at the 
amino acid level.  
 Please note that, for reasons that will become clear when neural network 
modeling of domain evolution is discussed below, the positions along the pro-
tein sequence, rather than the amino acids themselves, are defined as the ele-
ments of the systems. These elements can be in one of 20 different states (be 
filled by one of the 20 amino acids). The state of an element can change, i.e., a 
positions can mutate to a different amino acid. 
 (2) The elements of a complex system interact in a dynamic fashion and these 
interactions change over time. Dynamic interactions between amino acids (po-
sitions in certain states) mediate the folding process and a stable pattern of 
interactions subsequently determines the three-dimensional fold of the do-
main. Dynamic interactions are also fundamental to domain functions that 
are mediated by conformational changes. During evolution, the pattern of 
interactions between fold positions changes as a consequence of amino acid 
substitutions (gain or loss of hydrogen bonds, salt bridges, or van der Waals 
interactions). 
 (3) The interactions between elements are richly connected – any one element 
influences, and is influenced by, a large number of others. In a domain fold, 
amino acid positions along the linear protein sequence are engaged in multi-
ple local (involving positions that are close in the linear sequence) and non-
local (involving positions that are distant in the linear sequence) physical in-
teractions. With the exception of neutral positions, each fold position makes 
an individual fitness contribution and simultaneously affects the fitness of 
many other positions within the domain. Fitness is here defined as the capac-
ity of the domain to maintain its structural integrity and to carry out specific 
function(s).  
 (4) The interactions between elements are non-linear. Small causes can have 
large results, and vice versa. Complexity results from the patterns of richly con-
nected interactions between the elements. Complex systems exhibit so-called 
emergent properties, properties that are only seen in systems of an equivalent 
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degree of complexity. In other words, the behavior of complex systems can-
not be derived on the basis of knowledge of their parts. One of the key pro-
cesses responsible for emergence is self-organization (Cilliers 1998, p. 89; 
Holland 1998, pp. 115, 225). This co-ordinated behavior results from the 
non-linear interactions of its components which leads to collective effects. 
Self-organization also leads to spontaneous transitions into new collective 
states, at times as adaptive responses to changes in their environment.  
 The non-linearity of interactions between amino acid positions is a major 
reason why certain amino acid substitutions at only one or a few positions 
may unravel a domain fold. And, conversely, is a reason why amino acid se-
quences can at times diverge from homologous sequences beyond any statis-
tically significant similarity, while the shared domain fold is still conserved 
intact. We are unable to explain or predict these phenomena (at least for 
now), and so they also illustrate how non-linearity severely limits predictabil-
ity. Another related issue is the persistent elusiveness of a solution to the 
‘folding problem’, despite three decades of intense efforts.  
 (5) The interactions between elements are relatively short-range. Physical 
constraints and information are mostly transmitted between immediate neigh-
bors. However, this does not mean that there can not be long-range influences. In 
a richly connected network, the path between two elements can usually be cov-
ered in a small number of steps. Influences can be enhanced, suppressed, or mod-
ulated in some way along the path. Amino acids in domain cores are packed in 
an engergetically favorable arrangement, and strong local constraints on ami-
no acid variation are present. The network of amino acids that are in contact 
with each other collectively constrains mutational change. Although this 
mechanism is mediated by local interactions, it can propagate throughout the 
domain to distant sites via “chains of local interactions” (Lapedes et al. 1997). 
Non-linear constraint modulation along such interaction chains occurs due 
to the rich connectivity between elements (multiple physical interactions and 
mutual constraints).  
 (6) There are recurrent interaction pathways. The effects of a state change at 
one element can feed back on itself, either directly or via a number of intervening 
states. The feedback can be either enhancing or inhibiting. Depending on its 
nature, a mutation (state change) at one domain position may enhance or 
inhibit the probability of a particular amino acid substitution (after selection) 
at coevolving positions. These subsequent mutations may in turn enhance or 
inhibit further change at the first position. 
 (7) Complex systems have a history. They evolve through time, and their pre-
sent state is constrained by their past. Present-day protein domains have 
evolved from ancestral domains. Domain evolution can only occur within the 
constraints of maintaining thermodynamic stability and autonomous folding 
capability. 
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 (8) It can be difficult to precisely delineate the boundaries of a complex sys-
tem. Boundary definitions are often derived for descriptive purposes and are in-
fluenced by the position of the observer. Molecular biology in general follows a 
top-down approach. Bodies are broken down into tissues, tissues into cells, 
and cells into molecules, biochemical compounds, and atoms. Reductionism 
then seeks to explain the functioning of the organism on the basis of the 
chemistry and physics of its constituent parts. Complexity theory asserts the 
importance of balancing an analytical top-down approach, indispensable for 
the identification of the building-blocks of a system, with a bottom-up ap-
proach, in order to study how living systems emerge from the laws of physics 
and chemistry. Whilst all biological processes are consistent with the physical 
and chemical laws of our universe, and in this sense can ultimately be ‘re-
duced’ to chemistry and physics, there is a growing awareness among scien-
tists that biological phenomena require an approach that equally addresses 
the problem of emergence. Emergent phenomena result from the complex, 
rule-governed, interactions of a large number of biomolecules, in a highly 
context-dependent manner. Consciousness, to mention a familiar example, 
arises out of the unimaginably densely connected interactions of billions of 
neurons, and is not a property of any one brain region, let alone of the neu-
rons themselves. Consciousness is an emergent property of the brain as a 
whole. 
 From a different perspective, one which pays close attention to process 
and interaction across multiple levels of biological complexity, the living 
world appears as a multidimensional whole of complex systems within com-
plex systems. The demarcation lines between different levels of organization-
al complexity, and the delineation of any one of these systems, rest on 
boundaries defined according to criteria that will always, to some extent, be 
contingent on the perspective of the observer. This notwithstanding, the dis-
cussion so far has shown that protein domains can legitimately be seen as 
complex systems in their own right, far down in a nested hierarchy of pro-
teins, protein complexes, structural and functional networks in cells, whole 
cells and organisms.  

2. Domains evolve as complex adaptive systems:  
Hormone-binding domains in nuclear receptors 
Ligand-binding sites in homologous protein domains can diverge greatly dur-
ing evolution. This poses a particularly interesting problem in those cases 
where the ligand-binding site is situated in, or close to, the domain core, or 
where ligand-docking induces dramatic conformational changes. These fea-
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tures are present in many receptors and enzymes; the hormone-binding do-
main of the nuclear receptors for steroids and retinoids, for example, exhibits 
both characteristics. This raises the interesting question how binding sites for 
diverse ligands evolve in core regions of structurally dynamic domains. Are 
evolutionary changes locally restricted to the ligand-binding site, or are they 
distributed throughout the domain?  
 Steroid, thyroid and retinoid hormones comprise the broadest class of 
gene-regulatory ligands known. Their receptors belong to the diverse super-
family of nuclear receptors (NRs) that are present in all metazoans from 
cniderians onward and have had a central part in the evolution of biological 
complexity since the Cambrian explosion (Escriva et al. 1997, Laudet et al. 
1992). As ligand-inducible transcription factors, NRs play essential roles in 
the regulatory pathways that transmit signals, originating from the extra- and 
intra-cellular environment, to large genetic networks through a complex se-
quence of molecular interactions. These genetic networks regulate many as-
pects of development and function; specifically, higher morphology, the im-
mune system, the nervous system, as well as reproductive and metabolic sys-
tems. 
 The ligand-binding domain of nuclear receptors possesses a unique fold 

that is partly disordered in the absence of ligand, termed the “antiparallel α 
helical sandwich” (for refs., see Nagl et al. 1999). The helices are grouped into 
three layers around an internal ligand-binding core. Crystallographic studies 
of ligand-bound NRs suggest a structural role for ligand that is fundamental 
to the allosteric control mechanisms found in the ligand-binding domain. 
The ligand is completely buried within the domain interior and contributes to 
the hydrophobic core of the active conformation of the NR. Therefore, lig-
and binding directs the alignment of the secondary structural elements criti-
cal for receptor function, and strongly constrains the conformational free-
dom of the ligand-binding domain.  
 During the evolution of the NR superfamily, the ligand-binding pocket 
has evolved to allow binding of ligands possessing strikingly diverse chemical 
structures. Escriva et al. (1997) proposed that the ancestor of the superfamily 
was an orphan receptor without ligand-binding capability. Their study of NR 
evolution suggests that liganded receptors have arisen relatively recently and 
have gained the ability to bind ligands independently. Since the ligand-
contacting residues line the binding pocket in the domain core, they perform 
a dual role; a functional role in ligand recognition and a structural role as core 
residues. With respect to ligand recognition, they can be seen to constitute an 
‘interior interaction surface’. In principle, this would allow great scope for 
the evolution of the ligand-binding pocket. However, since the hydrophobic 
ligand is an integral part of the domain core in the active conformation, the 
ligand and the ligand-binding residues combined need to be able to maintain 
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structural stability and domain dynamics (conformational changes). How is 
this potential conflict between structural constraints and functional diversity 
resolved within the domain fold? In an earlier study, it was shown that the 
ligand-contacting residues in the hormone-binding pocket are evolutionarily 
linked to an extensive, hierarchically organized, network of coevolving posi-
tions (Fig. 2) (Nagl et al. 1999). The nature of the mutations in correlated 
positions suggests that they compensate for the destabilization resulting 
from the binding of diverse ligands and preserve the structural integrity and 
the conformational dynamics of the ligand-binding domain. In conclusion, a 
distributed evolutionary mechanism, involving the domain fold as a whole, is 
present in the ligand-binding domains of nuclear hormone receptors. It is 
suggested that this mechanism maintains a thermodynamically favorable in-
terplay between molecular organization and evolutionary dynamics. 

 

Figure 2: Retinoic acid-contacting positions and first-order 
covarying positions in the ligand-binding domain of the retinoic 
acid receptor. Ligand contacts are shown in black, covarying po-

sitions are shown in grey (α−carbons, spacefill mode). The ligand 
is shown in black (stick mode).  
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3. Neural network models of protein domain evolution 

3.1 An information-theoretic approach to protein domain evolu-
tion 

Gene duplication and recombination are thought to be the primary mecha-
nisms for the generation of protein diversity. In this process, one gene copy 
maintains the original function while the other is free to evolve new func-
tions. The concept of a functional space, as an abstract representation of all 
possible functions that can evolve within the structural constraints of a do-
main fold, is useful for the investigation of domain evolution. Within this 
conceptual framework, the emergence of new functions can be understood as 
the result of adaptive walks in sequence space. During this adaptive evolu-
tion, duplicated genes accumulate successive mutations that progressively 
enhance the new function.  
 In this work, where protein domains are studied as complex adaptive sys-
tems, the positions along the linear amino acid sequence of the domain are 
conceptualized as the elements, or ‘agents’, of the system that can each as-
sume one of 20 different states (i.e., the 20 amino acids) (Fig. 3). Four classes 
of fold positions can be distinguished in domains that are descended from a 
common ancestral domain: (i) positions with conserved amino acid identities; 
(ii) positions with conserved physicochemical properties; (iii) positions with 
variable physicochemical properties (often belonging to the distributed net-
work of coevolving positions (see Sect. 2); and (iv), unconstrained positions 
accumulating neutral mutations. Positions in the coevolutionary distributed 
network to be modeled by neural networks belong to class (ii) or (iii).  

 

Figure 3: The positions along the linear amino acid sequence of 
the domain constitute the ‘agents’ of the system, and can each 
assume one of 20 different states (amino acids in single letter 
code).  

The evolutionary history of a domain, contained in a sequence alignment, is a 
record of successful mutagenesis experiments carried out by nature. A multi-
ple sequence alignment indicates the extent to which specific residues may be 
changed without destroying domain structure. At the same time the align-
ment can identify those residues that need to be changed in order to create a 
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new function within a similar structural framework. Coevolving positions can 
be identified from a sequence alignment of a domain family using mutual in-
formation, a measure of correlation for discrete symbols. A formal measure 
of variability at position i is the Shannon entropy, H(i). H(i) is defined in 
terms of the probabilities P(si), of the different symbols, s, that can appear at 
a sequence position (i.e., for amino acid sequences s = 20, for the 20 possible 
states of amino acid occurrence) (Korber et al. 1993). H(i) is defined as 

H(i)  =  − ∑s  P(si) log P(si) (1) 

Mutual information is defined in terms of entropies involving the joint prob-
ability distribution, P(si, s’j), of occurrence of symbol s at position i, and s’ at 
position j. The associated entropies for each position i and j are 

H(i)  =  − ∑si
  P(si) log P(si) (2) 

H(j)  =  − ∑s’j
  P(s’j) log P(s’j) (3) 

And the joint entropy is defined as 

H(i, j)  =  − ∑si, s’j
  P(si, s’j) log P(si, s’j) (4) 

The mutual information, M(i, j), is defined as 

M(i, j)  =  H(i) + H(j) − H(i, j)  (5) 

If the positions are independent, their mutual information is 0. If, on the 
other hand, the positions are correlated, their mutual information is positive 
and achieves its maximum value if there is complete covariation. 
 Given a set of sequences that are assumed to be independent and identi-
cally distributed samples from a probability distribution, one can inde-
pendently estimate each pairwise probability distribution for every pair of 
positions by frequency counting. However, sequences belonging to a domain 
family are not independent samples, but are related through shared ancestry 
described by a phylogenetic tree. If two mutations occur independently in an 
ancestral sequence and these are subsequently inherited by many of the de-
scendants further down the tree, the two positions involved will receive a 
high mutual information score. To estimate the mutual information content 
between position pairs that is created by tree inheritance alone, and not by 
covariation, a simulation experiment can be performed (Nagl et al. 1999, La-
pedes et al. 1997). This procedure simulates the evolution of sequences by 
random mutations along a phylogenetic tree obtained from the domain se-
quence alignment. Using the outgroup as a seed, random sequences are 
evolved following the phylogenetic tree obtained from the real data set. Dur-
ing simulated random mutation of sequences, the states of the sequences are 
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duplicated at a bifurcation point in the tree, and the two copies are then inde-
pendently evolved. Every amino acid can mutate with equal probability to any 
other amino acid. The procedure is repeated numerous times, and signifi-
cance threshold values are determined from the frequency distributions of 
the mutual information scores in the control and real data sets. Any mutual 
information score greater than the lower boundary value, has a low probabil-
ity of being caused by inheritance through the tree. 

3.2 Neural network modeling of domain evolution  

The coevolutionary relationships identified by mutual information analysis 
can have very high interconnectivity, where each position in the coevolution-
ary network constrains, and is constrained by, many other positions. This 
was the case in the nuclear receptor ligand-binding domain (Nagl et al. 1999). 
Each amino acid is uniquely defined by its physicochemical properties, such 
as shape, volume, polarity, hydrophobicity and charge among many addition-
al, less well understood properties. Depending on the location of coevolving 
positions within the network, different physicochemical properties may be 
crucial in determining the pattern of coevolution. As has been learnt from 
homologous domain alignments, in many cases volume conservation is of 
paramount importance (Gerstein et al. 1994), while other properties are less 
constrained. In other cases, the hydrophobicity value or charge may be cru-
cial; or a combination of several properties. Presumably, the greater the num-
ber of properties involved, or the more restricted the allowed range of a sin-
gle property, the stronger will be the mutual constraints on allowed states for 
each position. All these factors combined result in constraints of high dimen-
sionality. Modeling coevolutionary networks with artificial neural networks 
(ANNs) can represent the complexity, and the parallel-distributed nature, of 
this evolutionary process. 
 ANNs are computer algorithms that attempt to model the way the brain 
works and draw on the analogies of adaptive biological learning. One particu-
larly valuable and intriguing characteristic of information processing in bio-
logical brains seems to be also present in ANNs – the ability to make deci-
sions based on very complex, noisy, irrelevant and/or partial information. 
While the comparison with the human brain has led to some exaggerated 
claims concerning ANNs, this analogy is a very useful way to describe the 
construction and function of neural nets. An ANN is composed of a large 
number of highly interconnected processing elements that are analogous to 
neurons and are tied together with weighted connections that are analogous 
to synapses. Interconnected neurons, whether biological or artificial, have 
certain neuro-‘logical’ properties and can be seen as logic gates: They receive 
input signals from a large number of other neurons, process these signals ac-



 Neural network models of protein domain evolution 153 

cording to specified transformation functions, and produce an output signal 
as a result of this processing. Brains and artificial neural networks represent 
information in a distributed fashion; information is encoded by the patterns 
of synaptic connection strengths (weights) between neurons. The distributed 
networks of neurons perform many transformation steps in parallel, a style of 
computation known as parallel distributed processing (PDP). When fully 
connected neural networks are used, a combination of a large set of connec-
tion weights and nonlinear transfer functions allows models of any complexi-
ty to be fitted between the response and the input parameters. Neural net-
works are therefore highly efficient nonlinear data modeling devices, and can 
be seen as universal models for information processing in complex system. 
Arguably, the evolution of functional sites within the coevolutionary net-
work of a domain family can be conceptualized as a type of PDP (Fig. 4). It 
should be well noted that this statement is not meant to imply a direct corre-
spondence in architecture between the coevolutionary network and an ANN, 
but refers to an analogous information-processing mode. Furthermore, as all 
parallel-distributed computational steps are executed simultaneously, ANN 
models of domain evolution do not represent the historical sequence of step-
wise mutation at coevolving sites over evolutionary time. This temporal as-
pect of coevolutionary networks can be analyzed and modeled by reconstruc-
tion of ancestral states by parsimony.  
 For the purpose of building an ANN model of a coevolutionary network, 
we return to our previous representation of a protein as a chain of agents in a 
linear sequence, each of which can take on one of 20 states (amino acids) 
(Fig. 3). The agents are understood as mechanisms for mediating interactions 
(Holland 1998, p. 6), and state transitions in agents (mutations) lead to a 
modification in the patterns of interactions, sometimes resulting in a change 
in structure/function. The state transitions are constrained by rules (Holland 
1998, p. 116), and all possible state sequences are the outcomes of a succes-
sion of transitions specified by these rules. In this way, the rules generate 
evolutionary novelty. Structure/function can now be re-conceptualized as an 
emergent property, the result of context-dependent interactions, that chang-
es over time.  
 It is possible to encode the state transition rules in the values of the con-
nection weights of an ANN model of the coevolutionary network. Specifical-
ly, the evolution of new functional sites within the coevolutionary network 
can be modeled by a classical fully-connected feedforward neural network 
(Fig. 4) (for a detailed mathematical treatment of feedforward network prop-
erties and behavior, see, for example, Skapura 1995, Mehrotra et al. 1996, Liv-
ingstone et al. 1997).  
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Figure 4: ANN model of the evolution of new functional sites 
in a domain family. The network architecture is that of a classi-
cal feedforward network whose size can vary dependent on the 
coevolutionary network to be modeled (closed arrows). Se-
quence positions (agents) function as fully connected pro-
cessing elements (squares). Each agent is represented as a binary 
or real number vector (open arrows; see below). A hetero-
associative mapping is performed that maps the input vector 
matrix (agent states in the functional site) to the output vector 
matrix that ranges over a different vector space (states of co-
evolving agents). After training, the ANN encodes the state 
transition rules of the coevolutionary network.  

An important decision to be made concerns how to encode 
the states of the agents. To name just two alternatives, they can 
be encoded as binary vectors (bitstrings), or as vectors of real 
numbers (any value between -1 and 1), depending on which as-
pect of the states we wish to model. If we want to encode ami-
no acid identities (A, W, S, D, etc.), bitstring encoding and a 
discrete ANN model suggest themselves as the most appropri-
ate choice. If we want to encode information about certain 
physicochemical properties of the amino acids (hydrophobicity, 
hydrophilicity, charge, polarity, volume, etc.), this can be 
achieved by using real number vectors, where each property is 
expressed by a normalized value between -1 and 1, and a con-
tinuous ANN model.  

The inbuilt directionality of this type of neural net corresponds to selection 
pressure on the domain for evolving new functions. During training, the 
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network is presented with instances of functional sites (input) and associated 
amino acid identities at coevolving positions (output) taken from domain 
family sequence alignments, and trained to associate outputs with input pat-
terns. When the network is subsequently used for modeling, it identifies the 
input pattern and tries to produce the associated output pattern. The power 
of neural networks comes to life when a pattern that has no output associated 
with it, is given as input. In this case, the network predicts the output based 
on the rules learnt in the training phase. This property is responsible for the 
power of a neural network in evolutionary modeling. When, for example, giv-
en an artificially designed functional site as input, it will predict the likely 
compensatory states of the coevolving agents based on the learnt state transi-
tion rules. The ANN modeling procedure is expected to be valuable for the 
design of novel ligand-binding capabilities for a given domain fold. ANN 
modeling, based on the coevolutionary relationships between ligand-binding 
sites and coevolving positions, may enable one to overcome otherwise pro-
hibitive limits to binding-site modifications. Predictions of fold-stabilizing 
mutations located at coevolving positions throughout the domain may be 
used to maintain the stability of the modified fold. 

4. Ethical implications of model choice 
Biomolecular engineering is fast acquiring the technical know-how for the 
design and large-scale manufacture of novel proteins. This current progress in 
engineering goes hand in hand with revolutionary advances in molecular 
medicine, that are generating an unparalleled increase in knowledge about 
human diseases. In the future, it will be possible to design proteins for novel 
therapeutic properties, and these ‘designer molecules’ will make up a major 
part of the new molecular materia medica. Accompanying these develop-
ments is a far-reaching conceptual shift that is leading to a radical re-
definition of the human body as a hugely complicated molecular machine. 
This new vision of human biology, with its concomitant engineering ap-
proach to the treatment of disease, has profound ethical implications, as it 
increasingly determines how we choose to intervene in the functioning of the 
body. Within such a framework, knowing, representing and intervening can 
clearly not be separated. We represent in order to intervene (Hacking 1983). 
The demarcation line between ‘pure’ and ‘applied’ science becomes ever more 
illusionary. Therefore, any choice, concerning the modeling of biomolecular 
structure and function, ought to be made in the awareness that models are 
never only descriptive tools for knowledge representation, but are also pre-
scriptive. Keller (1992, p. 5) observed:  
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Since representations are necessarily structured by language (hence, by cul-
ture), no representation can ever ‘correspond’ to reality. At the same time, 
some representations are clearly better (more effective) than others. In the ab-
sence of a copy of truth, we need to search for the meaning of ‘better’ in a 
comparison of the uses to which different representations can be put, that is, 
in the practices they facilitate. From such a perspective, scientific knowledge is 
value-laden (and inescapably so) just because it is shaped by our choices – 
first, of what to seek representations of, and second, of what to seek represen-
tations for. Far from being value-free, good science is science that effectively 
facilitates the material realization of particular goals, that does in fact enable us 
to change the world in particular ways. 

Model choice, while unquestioningly having to satisfy cognitive values such 
as accuracy, consistency, simplicity, breadth of scope and fruitfulness 
(Longino 1996), also has an explicit ethical dimension that scientists have a 
responsibility to confront (Nagl 1998). A critical awareness of which kind of 
knowledge, and which kind of goals, are likely to be facilitated by the chosen 
mode of representation ought to inform any modeling project. I will argue 
that, when dealing with complex systems – be they molecules, human bodies 
or ecosystems – we have a duty to study and represent them as such. I will 
show that this duty derives from the classical bioethical principles of benefi-
cence and nonmaleficence (Beauchamp & Childress 1989), and then will ex-
tent my argument by discussing aspects of Longino’s ‘theoretical virtues’ 
(Longino 1996, p. 44). 
 The Hippocratic oath expresses a duty of nonmaleficence, or not inflict-
ing harm, together with a duty of beneficence, or doing good (Beauchamp & 
Childress 1989, p. 120). These duties are absolutely fundamental to biomedi-
cal ethics and the practice of medicine. In contemporary medicine, biomedi-
cal research scientists are doctors’ close partners, and thus it can be argued 
that the ethical prescriptions of the Hippocratic oath ought to extend to their 
branch of the life sciences. Scientists’ duties may be loosely phrased as fol-
lows: “I will pursue my scientific work to help the sick according to my abil-
ity and (best) judgement, but I will never use it to injure or harm them.” 
 In the light of the immeasurable potential benefits of artificially designed 
proteins in molecular medicine, it is greatly desirable that we develop a reper-
toire of design methods that would enable us to create proteins for therapeu-
tic uses. Thus, one can assert that a duty to develop such techniques exists, 
and that this duty derives from the principle of beneficence. However, many 
problems still hamper the attainment of these goals. On the one hand, it has 
been recognized for some time that protein design can draw vital insights 
from evolutionary principles. On the other hand, the complex interplay of 
molecular organization and evolutionary dynamics is still poorly understood, 
and this lack of understanding presently limits potentially extremely fruitful 
evolutionary approaches to protein design. An awareness of these problems, 
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together with the insight that proteins are complex adaptive systems – in 
other words, that they evolve as complex systems – leads to a duty to study 
their complex systems properties. Such a duty is grounded in the reasonable 
expectation that such a research program will enable the gain of new 
knowledge, and the development of new design techniques, that are inacces-
sible from within other conceptual frameworks. This duty therefore also fol-
lows from the principle of beneficence. The work on complex systems mod-
els of protein domain evolution presented in this paper was carried out in the 
hope that it will help elucidate how new functions evolve in stable folding 
architectures, and be a contribution towards overcoming the current limita-
tions in protein design.  
 Whenever there are consequences to human welfare, the duty to treat 
complex systems as complex systems is also grounded in the principle of 
nonmaleficence, or not inflicting harm. This is quite immediately obvious in 
the case of large complex systems, such as ecosystems or whole biological 
organisms. An environmental risk assessment, or a drug trial, that employs 
models that are inadequate for detecting effects due to complex systems 
properties, may pose great risks to people. A duty to avoid the use of such 
models, and to develop alternatives that can model complex systems behav-
ior, can be easily appreciated. It may, however, at first be less obvious how 
such a duty due to nonmaleficence could be postulated for models of much 
smaller complex systems, models of proteins for example.  
 Here, we need to briefly digress to consider that models are in a certain 
sense metaphorical constructions (Nagl 1998; Holland 1998, p. 207). As 
such, they carry with them not only explicit messages but also implicit con-
tent. A model is a device for seeing the world in a particular way. A well-
developed scientific model accumulates a complicated assortment of tech-
niques, interpretations, standards of proof, and so on; and may well have a 
cognitive impact far transcending the original context in which it was con-
ceived. Much of this remains unwritten, but is understood by everyone who 
has been socialized within the research tradition associated with the model.  
 Importantly, models shape our habits of thought. It seems therefore un-
wise to think that, while we may feel an ethical obligation to develop models 
that embody the complexities of the human body, we may ‘get away’ with 
ignoring the complex systems properties of biomolecules. Our fundamental 
orientation toward life is always at issue, no matter what part of it we happen 
to focus on at the time. Habits of thought that prompt us to take heed of the 
complexity inherent in all biological entities, will direct our thinking away 
from seeing and representing such entities in simplistic terms – away from 
mechanistic conceptions of molecules or visions of machine-like bodies. 
They will hopefully also stop us from intervening in the human body from 
this fragmented, and potentially extremely harmful, perspective. It is within 
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this wider context that nonmaleficence can be seen as a guiding principle, 
supporting the duty to study the complex systems properties of biological 
entities. On the positive side, these novel habits of thought may direct us 
toward an understanding of the world as a multidimensional whole of com-
plex systems within complex systems. Such a change in thinking may subse-
quently lead to new biomolecular therapies that seek to cooperate with, ra-
ther than control, living systems. The central role of biomolecules in molecu-
lar medicine, a tremendously powerful and influential new research field, may 
make complex systems models of these molecules instrumental in bringing 
about such a global change in scientific attitude.  
 This leads on to some final points I wish to make. My reflections on ethi-
cal issues of model choice find an echo in Longino’s work on theoretical vir-
tues (Longino 1996, p. 44). These virtues complement the cognitive values of 
accuracy, consistency, simplicity, breadth of scope and fruitfulness, that are 
commonly applied to assess the merits of scientific models. Longino’s virtues 
of ‘novelty’ and ‘mutuality of interaction’ are especially pertinent to my con-
cerns. Longino defines ‘novelty’ as models or theories that differ in signifi-
cant ways from presently accepted ones by (i) attempting to elucidate phe-
nomena that have not been previously studied, (ii) postulating different pro-
cesses, (iii) adopting different principles of explanation, and (iv), incorporat-
ing alternative metaphors (p. 45). As Longino (1996) states, “treating novelty 
as a virtue reflects a deep skepticism that mainstream theoretical frameworks 
could be adequate to the problems confronting us” (p. 46). It is certainly 
from a great disquiet regarding the present state of our biomedical models 
that I argue for an urgent need for complex systems models, which can be 
seen to fulfil all four of Longino’s criteria of novelty. Finally, the virtue of 
‘mutuality of interaction’ values theories and models that treat relationships 
between entities and processes as mutual, avoid causal explanations based on 
single factors, and take complex interaction as a fundamental principle of ex-
planation (Longono 1996, p. 47). Clearly, complex systems models are em-
bodiments of this virtue par excellence. In conclusion, complex systems ap-
proaches, informed by the theoretical virtues of ‘novelty’ and ‘mutuality of 
interaction’, are highly relevant to current biomedical research, if one is to 
fulfil the duties of the Hippocratic oath. 
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