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What Can Mathematical Chemistry  
Contribute to the Development of  

Mathematics? 

Haruo Hosoya 

Abstract: It is pointed out that visualization, such as the structural formula of 
molecules, is the most important factor in ‘chemical thinking’. How mathe-
matical chemistry has contributed to the development of mathematics is de-
scribed with particular reference to the topological index or Z-index, proposed 
by the present author, and fullerene chemistry developed by mathematical 
chemists in various countries. Mathematical chemistry will be able to contrib-
ute to the development of mathematics by interplaying with mathematicians in 
the same way as it has been developing up to the present stage.  
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1. Introduction 
The history of mathematical chemistry is indeed as short as only half a centu-
ry. However, its prehistory may even go back to the era of alchemy, when 
people (not only alchemists themselves but also those who were surrounding 
and expecting them) were struggling with chaotic material to obtain pure 
precious substances each of which was abstracted in their brain as though 
mathematicians are seeking some novel abstract concept among the jungle of 
numbers, formulas, and their relations. This is neither an exaggerated nor an 
irrelevant statement. 
 Consider, for example, hydrogen. By looking at or by writing ‘H’, 
every chemist can (nowadays) routinely imagine a hydrogen atom or a mole 
of atomic hydrogen, although the most advanced scientific technique can 
never isolate or prepare any of this in a laboratory. Further, a chemist be-
lieves that a hydrogen atom is composed of a pair of electron and proton and 
can imagine their relative positions and movement, albeit according to Hei-
senberg’s uncertainty principle one cannot locate their positions and veloci-
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ties simultaneously. Probably old chemists or alchemists were thinking simi-
larly to us at the scientific level of their days.  
 According to the quantum theory we can obtain only the atomic wave-
function of a negatively charged light electron surrounding the proton, an 
extremely small particle but with heavy mass and opposite charge, either in 
the ground state or in some excited state. One may choose either the ran-
domly hopping or time-averaged view of the electron by interpreting the 
mathematically well-defined wavefunction. From whatsoever viewpoint you 
have, you cannot behold the clear image of a hydrogen atom as illustrated in 
elementary textbooks of chemistry, even if you are allowed to creep into the 
subatomic world and can watch all the landscape. Nevertheless, almost all 
chemists can figure out the existence of a single hydrogen atom and express it 
by the simplest symbol ‘H’. This visualization process by chemists is not an 
act opposite to abstraction but can itself be considered a kind of abstraction. 
Visualization of chemistry-related concepts is essential in chemistry as will be 
clear in the following discussions.  
 Now go back to the H-atom. By doing the same way for other atomic 
species, such as C, N, O, etc., and by assigning their ‘valences’ with certain 
positive integers, chemists cannot only understand the structure and proper-
ties of numerous molecules each of which can be constructed from the com-
ponent atoms, but also design and synthesize new substances with the struc-
tural formulas as their guiding principle (Balaban 1976).  
 In this way chemists can perform ‘the chemical thinking’, which was ab-
stracted from the huge amount of information and knowledge for numerous 
chemical substances, such as mathematicians manipulate the way of their 
‘mathematical thinking’ that was acquired from the world of numbers and 
beautiful logic. Thus the essence of chemical thinking and chemical logic is 
not so different from that of mathematical thinking (Hosoya 1981). Howev-
er, the worst of it is that the majority of chemists do not know this im-
portant fact that they themselves are doing such abstraction. Then they tend 
to dislike and step away from mathematics.  
 On the other hand, mathematical chemists, who are actually a minority of 
all chemists, know the essence of mathematical thinking and are exploring 
new possibilities of applying mathematics to old and new problems in chem-
istry and chemistry-related fields of science. In 1971 the present author pub-
lished the paper, ‘Topological Index. A Newly Proposed Quantity Character-
izing the Topological Nature of Structural Isomers of Saturated Hydrocar-
bons’ in the Bulletin of the Chemical Society of Japan (BCSJ) (Hosoya 1971, 
Balaban & Ivanciuc 1999). At that time and for more than twenty years af-
terwards most chemists, even theoretical chemists in and outside of Japan, 
were skeptical of the reality of my work (Z-index for short) and mathemati-
cal chemistry as a whole (see Hosoya 2002). However, recently the mathe-
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matical essence of the Z-index was gradually recognized by mathematicians 
and now it is introduced in Wikipedia (2011), Wolfram’s MathWorld (2011), 
and other mathematical databases. The number of citations of the above pa-
per has increased up to more than 900 now and become the second highest 
among all published papers in BCSJ.  
 With these facts as the background I will convey my thoughts on how 
mathematical chemistry could and will be able to contribute to the develop-
ment of mathematics. As stated above, chemists like to express various con-
cepts by using diagrams and figures as symbolized by the structural formulas 
of molecules. Namely, visualization is the most important execution in chem-
ical thinking. This is quite the opposite stance by Bourbaki, a radical group of 
French mathematicians, which under the name of ‘New Math’ has practically 
overwhelmed the mathematical education systems in the world after the 
1960s. Their unbelievable slogan was “Euclid Must Go kill the triangles” 
(Dieudonné 1959/61). Geometry-related subjects were removed from text-
books of elementary mathematics and replaced by algebra and set theory, 
because those geometrical objects were considered harmful to strict abstrac-
tion in mathematical thinking.  
 Before going into the main part of this paper the following problem needs 
to be pointed out: Chemists do not hesitate to use induction rather than 
deduction. This is quite the opposite stance of mathematicians. Although 
physicists may be in between chemists and mathematicians, quantum theory 
was actually developed by a repeated chain of induction and deduction. How-
ever, once this is established, people want to go as deductively as they can. 
On the other hand, a majority of mathematical chemists including myself do 
not stick to either stance. Just they want to solve the problem in whatever 
method they can choose.  

2. Important role of Z-index in mathematics 
In my first mathematical chemistry paper mentioned above (Hosoya 1971) a 
new interpretation of the mathematical relation between Pascal’s triangle and 
Fibonacci numbers was proposed by using the non-adjacent number, p(G,k), 
for the series of path graphs. Details are given in Appendix I of this paper.  
 See Fig. 1, where Pascal’s triangle is given with a group of slant parallel 
lines which give Fibonacci numbers by taking the sum of those grouped-out 
numbers. This fact has long been known in mathematics (Koshy 2001) but 
with no physical or geometrical interpretation. The new interpretation is as 
follows.  
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Figure 1. The relation between Pascal’s triangle and Fibonacci 
numbers. 

Consider, for example, a path graph P6, which is obtained by joining consecu-
tively six vertices with five edges. The non-adjacent number, p(G,k), is de-
fined as the number of ways for choosing k disjoint edges from graph G, with 
p(G.0) being defined as unity for any graph. It is obvious that p(G,1) is equal 
to the number of edges in G, i.e., 5 in this case. The p(G,2) and p(G,3) num-
bers can be enumerated, respectively, as 6 and 1 as illustrated in Fig. 2.  

 
p(G,2)=6

p(G,3)=1

 

Figure 2. Enumeration of p(G,2) and p(G,3) for P6 graph. 

All the remaining p(G,k)’s with k larger than 4 are zero for P6. Since the total 
sum of p(G,k) for a given graph G constructed from N vertices is defined to 
give the Z-index as 
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for P6 one gets ZG=1+5+6+1=13, which is incidentally one of the mem-

bers of the Fibonacci numbers as lined up in the right side of Fig. 1. 
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 The reason for explaining the Z-index so deeply here is to compare this 
concept with Euler’s continuant (polynomial). Euler proposed the ‘continu-
ant’ for easy manipulation of the continued fraction (see Graham et al. 1989), 
such as  

  

[a0;a1,a2,L,an ] = a0 + 1

a1 + 1

a2 + 1

L+ 1
an

. (2) 

He defined the continuant Kn(a1, a2,…,an) in a recursive way whose explana-
tion, however, will be given also in Appendix II, and derived the relation for 
manipulating the continued fraction [a0; a1, a2,…,an] as follows: 

  

[a0;a1,a2,L,an] = K n+1(a0,a1,a2,L,an)

K n(a1,a2,L,an)
 (3) 

Although he could derive many useful relations for the continuant, the calcu-
lation of a given continued fraction was a little simplified, but no more than 
necessary.  
 Recently it was shown by the present author that the continuant 
Kn(a1, a2,…,an) is nothing else but the Z-index of the caterpillar graph 
Cn(a1, a2,…,an), which can be constructed by mounting the set of the star 
graphs Xn(a1–1, a2–1,…,an–1) onto each vertex of the path graph Pn, where 
ak–1 is the number of edges of unit length emanating from the k-th vertex as 
seen in Fig. 3 (Hosoya 2007a).  

a1–1

2

a2–1 an–1

1 n

Cn (a1, a2, 
..., an) 

       (ak≥ 1)

 

Figure 3. Caterpillar graph. 

Namely, if the Z-index of Cn(a1, a2,…,an) is denoted by Zn(a1, a2,…,an), the 
above statement can be expressed as simply as 

Kn(a1, a2,…,an) = Zn(a1, a2,…,an). (4) 

By using this relation a given continued fraction (3) can be expressed by the 
Z-indices of the relevant caterpillar graphs. Note that the concept of Z-index 
is higher than the continuant, because Z-index is defined for all the simple 
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graphs (i.e., non-directed and without multiple edges and loops), whereas the 
continuant is related to only caterpillar graphs. 
 Since there have been known a number of useful recursive relations for 
enumerating the Z-index for a given graph (Hosoya 1971), Zn(a1, a2,…,an) is 
easily obtained by back-of-envelope calculations. More detail explanations 
will be given in Appendix II. 
 Although details will not be given here, the solution of a linear Diophan-
tine equation of the type 

ax – by = ±1 (all integers) (5) 

can also be solved quite efficiently by substituting this equation into the 
caterpillar graph expression followed by enumeration of the Z-index (Ho-
soya 2010). The fastest algorithm for solving the Pell equation was also ob-
tained by using the Z-indices of caterpillar graphs (Hosoya 2007b). 
 Thus by using the Z-index a number of problems in elementary number 
theory could be solved and interpreted. Here three more examples will be 
shown and explained. First see Fig. 4, where six series of graphs are illustrated 
whose Z-indices give famous series of numbers, such as Fibonacci, Lucas, 
Pell, Pell-Lucas, etc. (see, for example, Weisstein 2003). All of them obey the 
following recursion formula, 

fn = a fn–1 + fn–2 (6). 

Note that the graphs given here are the fundamental series of graphs in graph 
theory, such as path (Pn), comb (Un), cycle (Cn), gear (Gn), and related 
graphs, while the numbers are also the fundamental series of numbers in 
algebra, such as Fibonacci (a=1), Pell (a=2), Lucas (a=1), Pell-Lucas (a=2), 
and related numbers. As is evident from Fig. 4, all these mathematical objects 
independently defined either in geometry or algebra could find their inherent 
and kindred counterparts in other fields of mathematics through the Z-index. 
Further, one can extend these interwoven relationships in Fig. 4 up to infini-
ty by increasing the number of edges emanating from every vertex of the 
main path or cycle, and the value of a in (6), respectively, one by one. 
 Let us call such a graph ‘Z-graph’ whose Z-index is equal to a given Z 
value. Note that the Z-graph is not unique to a given graph G, because usual-
ly there exist several different G’s for a given Z. Such degeneracy increases 
with Z. However, for a series of graphs which are generated according to a 
certain rule the series of Z-graphs are sought to form regular structures as 
shown in Figs. 4-6. 
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1 2 3 4 5

Pn

Un

Vn

n

Cn

Gn

Hn

1 2 3 5 8

2 5 12 29 70

3 10 33 109 360

1 3 4 7 11

2 6 14 34 82

3 11 36 119 393

Fibonacci

Pell

Lucas

Pell-Lucas

A006190

A006497  

Figure 4. Various series of graphs whose Z-indices give famous 
series of numbers. The alphanumerical codes are those of 
Sloane’s database (Sloane 2000). 
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Figure 5. Three series of SymCats (symmetrical caterpillar 
graphs) whose Z-indices give the edges of Pythagorean triangles 
with consecutive legs. 
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By using the term Z-graph the above findings in Fig. 4 may be extended and 
paraphrased optimistically as follows: If a well-defined series of numbers is 
given, there may be a possibility of finding the corresponding series of Z-
graphs with regular structure. Then why are you not optimistic about finding 
other beautiful examples? 
 Here let us see one example in Fig. 5, where trio series of Z-graphs are 
given to each entry of the three edges of the Pythagorean triangles with con-
secutive legs (Beiler 1964), such as 

32 + 42 = 52,    212 + 202 = 292,    1192 + 1202 = 1692, etc. (7). 

A Pythagorean triangle is a right-angled triangle with integer edges. Realize 
the rule of construction of the Z-graphs of these trio numbers. Namely, if 
one attaches a pair of L- and anti-L-shaped brackets to the buds (small circles 
given in the three graphs (a, b, c) in the right side) of the trio kernels, the Z-
graphs of (3, 4, 5) framed on the left side of Fig. 5, the Z-graphs of the next 
larger entry (21, 20, 29) will be generated, and so on. Interestingly enough, all 
the Z-graphs thus generated are found to be caterpillar graphs of mirror 
symmetry, and we call them ‘SymCats’ (Hosoya 2009a).  
 As these triangles (ak, bk, ck) in Fig. 5 converge to the isosceles right trian-
gle with the increase of k, even from the data of k=4 one can obtain a fairly 

accurate rational number approximation of 2 as 

  

697+ 696

985
= 1.414213198L

.  

By extending this idea one can design other series of Pythagorean triangles 

giving a rational number approximation of other quadratic surd, such as 3. 
See Fig. 6, where two trio series of Z-graphs having this property are given 
(Hosoya 2009b).  
 In this case the accuracy is not so good:  

  

2911

1680
=1.732738L

. 

Anyway the results of Figs. 5 and 6 were obtained by a mathematical chemist 
as a kind of visualization of mathematics. At this stage I could not open a 
new field of mathematics of higher level from these findings, but I hope the 
box I have opened is not a kind of Pandora. The most important finding in 
this study is that interrelations among many different concepts originating 
either in algebra or geometry are established through the Z-index. 
 The present author believes that these success stories came from the fol-
lowing reason. Namely, the concept of the Z-index, although originating in 
mathematical chemistry, describes a geometrical or graph-theoretical con-
cept, i.e., matching in a graph, by proper algebraic words and definitions. In 
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other words, this is a kind of visualization process, which is very common in 
mathematical chemistry, applied to problems in pure mathematics, where the 
abstraction process prevails even over geometrical objects.  
 The above-mentioned Z-index matters are mere examples of the im-
portant role of mathematical chemistry for contributing to the kingdom of 
pure mathematics. Let us see another example, the fullerene chemistry. 

3

4

5

56

33

65

780

451

901

b, c : fn = 3 fn–1 + 3 fn–2 –  fn–3  a : fn = 4 fn–1  –  fn–2

n =           1                  3                          5

an

bn

cn

:

a b c

k–1k–1

8

15

17 241

n =           2                    4                             6

an

bn

cn

120 1680

209 2911

3361

:
a

b
c

2k–1

2k

 

Figure 6. Z-graphs of a pair of trio series of Pythagorean trian-

gles giving rational number approximation of 3. 

3. Mathematics in fullerene science 
In 1985 Kroto, Smalley, Curl and coworkers first reported the discovery of 
C60 fullerene (Kroto 1985) only from the mass spectral signals and their op-
timistic speculation that the soccer-ball type truncated icosahedron is the 
most probable structure of the C60 molecule, which was later firmly proved 
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by IR (Krätschmer et al. 1990) and NMR (Taylor et al. 1990) spectral obser-
vations. In deriving this conclusion the selection rule for these spectra played 
the key role by the aid of character tables for point groups of the icosahedron 
(Ih) and related polyhedra. 
 Remember that since the 1930s the quantum-mechanical theories and 
useful techniques using the point and rotation groups for interpreting and 
predicting various spectroscopic measurements of molecules were established 
solely by the endeavor of several talented theoretical physicists and a few 
chemists. This is a well-known historical fact. However, it is not widely 
known that even today in the curriculum of group theory taught to mathe-
matics major students in many universities the point group is usually not 
included especially on its representation theory, which is the most important 
concept and tool for physical chemists to apply the group theory to spectros-
copy.  
 Similarly when those fullerene scientists were struggling with C60 and C70, 
practically no helping hand was given from the mathematical side. They 
needed the database for the possible isomeric structures of 5,6-polyhedra of 
C60 including other fullerenes, Cn’s, with n smaller than 100 or so, under the 
condition that every vertex should have three neighbors. In mathematical 
terminology the database they wanted to get was the complete list of all the 
possible cubic 5,6-polyhedral graphs with 20≤n<100 and their symmetry 
properties.  
 Of course, the famous Euler’s theorem for polyhedra,  

E = V + F – 2 (8) 

(with E being the number of edges, V the number of vertices, and F the 
number of faces) plays a very important role in this case, predicting that in all 
fullerene networks there should be 12 pentagons entangled with an arbitrary 
number (≥2) of hexagons.  
 There existed only a few partial tabulations of those polyhedra by Gold-
berg (Goldberg 1934, 1937). Interestingly enough, they were published in 
Tohoku University in Japan, which very recently suffered not a little by the 
big earthquake on March 11 of 2011 (but fortunately not from Tsunami and 
atomic power plant damage).  
 After several failures, three groups in the US, Great Britain, and Croatia 
could finally obtain the correct results for fullerene networks, which are now 
tabulated and available to the public (Fowler et al. 1995). For C60 fullerene 
only the soccer-ball shaped one has such a peculiar structure among 1812 
isomers that all the 12 pentagons are isolated among the sea of 20 hexagons. 
Such a structure with isolated pentagons was thought to be the cause of its 
extraordinary stability among all the isomers (Kroto 1987, Schmalz et al. 
1988, Balaban & Klein 2009).  
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 As a matter of fact all mathematically possible networks were derived 
from the ‘spiral algorithm’ (Manolopoulos et al. 1991) which, however, is 
mathematically insufficient but was later guaranteed up to several hundreds 
of n. On the other hand, although a mathematically rigorous algorithm by 
Coxeter is known, for relatively large n, it can practically be applied only to 
the limited number of polyhedra of high symmetry.  
 In the enumeration problems of discrete mathematics and practical chem-
istry, we often meet such a dilemma of a neat but impractical mathematical 
method and ‘brute force’ searching. Scientists may choose the latter stance 
when they are forced to choose one. Especially chemists are struggling with a 
melting pot of chemical substances of a huge number of species. Even though 
the number is huge , it is not infinite but finite. So we try to solve this practi-
cally, even if the method is not mathematically neat and complete. In many 
cases, however, the obtained results could be proven by mathematical induc-
tion. This problem will be discussed more deeply in the final section of this 
paper.  
 The next step to be taken for solving fullerene problems was the quan-
tum-mechanical calculation of the electronic states of all isomers. There are 
two main roads for understanding and reproducing the electronic structure 
of molecules, i.e., molecular orbital (MO) and valence-bond (VB) methods, 
both of which were developed and established by theoretical physicists and 
chemists since 1927 (Heitler et al. 1927). The only exception was C.A. Coul-
son, originally a mathematician in Oxford, who not only published many key 
papers in this field but also mentored several brilliant theoretical chemists. In 
that period of time mathematical chemistry was not yet categorized in chem-
istry. Before computers were available to theoretical chemists, Coulson’s 
school was not trying to perform huge calculations but to formulate im-
portant concepts in chemistry by using beautiful mathematics. The most 
prominent achievement was attained by Coulson and Longuet-Higgins, who 
could formulate important electronic quantities defined in MO theory in 
terms of contour integrals over the complex plane (Coulson et al. 1947). By 
extending his theory I could obtain a mathematical foundation for the appli-
cation of my Z-index to Hückel MO method (Hosoya et al. 1976). In this 
sense Coulson and Longuet-Higgins are surely the prominent ancestors of 
mathematical chemists. 
 Since there are straightforward recipes for the MO method, it was soon 
concluded that the soccer-ball shaped C60 was the most stable and that there 
may be almost no chance for preparing other isomers. Due to its high sym-
metry the 60X60 determinant of Hückel MO was shown to be highly factor-
able down to the product of polynomials smaller than 3X3 by using the con-
cept of ‘topological symmetry’ which was gained during the study of factori-
zation of determinants (Hosoya et al. 1994).  
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 On the other hand, from the VB side it took several years to get the num-
ber of perfect matchings, or Kekulé structures of this network to be a highly 
factorable number of 12500 = 22X55 (Hosoya 1986, Schmalz et al. 1986). 
Nowadays the number of Kekulé structures for giant fullerenes with 60n2 
(n=2) vertices has also been calculated (Milicevic et al. 2006). It is as large as 
21,587,074,966,666,816 = 26X29X2693X7732. Again all these results were ob-
tained by mathematical chemists, although the perfect matching has long 
been an important quantity in graph theory (for example, Harary 1969, 
Skiena 1990). Thus all the fullerene mathematics were obtained and estab-
lished without the help of mathematicians. However, the conjecture posed by 
the present author (Hosoya 1986) that the perfect matching number for 
highly symmetrical polyhedral graph is highly factorable is not yet solved.  

4. Conclusion 
We have seen many different interplays of mathematical chemistry and math-
ematics. In some sense, mathematical chemists especially myself, are easy-
going compared to the strict mathematicians, especially Bourbaki people. All 
our works are visualization of something and are sticking to induction rather 
than deduction. Some of the results obtained by us contain important infor-
mation even in pure mathematics, although that does not necessarily mean 
that they were derived by mathematically neat methods. 
 Let me introduce a metaphor. Automobiles (cars) were invented to help 
carry people and heavy things faster and further, and nowadays many people 
are using their own cars for those purposes. Namely, most people drive their 
cars for helping themselves, and the cars are not their goal or purpose. How-
ever, it is true that there is a certain limited number of people, such as auto-
mobile makers and F1 racers including their supporting teams, to whom cars 
are the end of their lives and something to venture their lives for. Nobody 
can stop them, because they can do what other people cannot do. 
 On the other hand, not only mathematical chemists but also theorists in 
various fields of science love mathematics and they use and develop mathe-
matics to attain their goals. Mathematics is not the property of a limited 
number of mathematicians who cannot survey and follow every detail of the 
rapid, wide, and deep development of modern science. Mathematics should 
be developed by humankind as was the case with the very beginning of its 
long history. If something happens wrong in some new mathematics, math-
ematicians have a right and duty to advise, correct, or improve it. Anyhow, 
mathematical chemistry will be able to contribute to the development of 
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mathematics by interplaying with mathematicians in the same way as it has 
been developing up to the present stage as it stands now. 
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Appendix: I. Topological index ZG (Hosoya 1971) 
A graph G is a mathematical object composed of vertices and edges. An edge 
has a pair of vertices at both ends. Here we are concerned only with those 
graphs which have no directed and multiple edges. First define the non-
adjacent number, p(G,k), as the number of ways for choosing k disjoint edges 
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from G (See Fig. 2). Here p(G,0) is defined to be unity for all graphs includ-
ing the vacant graph φ, and p(G,1) is equal to the number of edges in G. Then 
the topological index, or Z-index ZG, is defined as the total sum of p(G,k)’s as  

ZG = p(G,k)
k= 0

N / 2 

∑  (A1) 

where N is the number of vertices in G. The Z-index can be deemed as the 
total matchings plus one (Hosoya 1971).  
 In Tables A1 and A2 the p(G,k)’s and ZG’s for the series of path graphs 
{PN} and monocyclic graphs {CN} are given. Their ZG’s are, respectively, 
Fibonacci and Lucas numbers. It can be shown (Hosoya 1971) that for tree 
graphs (without any cycle) the characteristic polynomial PG(x) which is de-
fined by using the adjacency matrix A and unit matrix E as 

PG(x) = (–1)N det(A – xE) (A2) 

can be expressed by the set of p(G,k)’s as in Tables A1 & A2. 
 

Table A1: p(G,k) and ZG for path graphs Pn 
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Table A2: p(G,k) and ZG for monocycle graphs Cn 

 

PG(x) = (−1)k p(G,k)
k= 0

N / 2 

∑ xN−2k (G ∈ Tree) (A3). 

Various recursion formulas for calculating ZG have been known. For example, 

see Fig. A1, where G–l and GΘl are the subgraphs of G obtained by deleting 
an arbitrary edge l from G, and further all the edges adjacent to l, respective-
ly. Note that p(G–l,k) counts the l-exclusive selection of k disjoint edges, 

while p(GΘl,k–1) gives the l-inclusive counts for k disjoint edges. According 
to the inclusion-exclusion principle the sum of these two contributions gives 
the desired p(G,k). The recursion formula of ZG is also given in Fig. A1.  
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l

G G – l  lG

 lGp(          , k-1)p(G,k) p(G – l,k)= +

ZG
= Z G     lZ G –  l +  

Figure A1: Inclusion-exclusion principle and the recursion for-
mulas of p(G,k) and ZG. 

A caterpillar graph Cn(a1, a2,…, an) has already been defined in the main text 
as in Fig. 3. By applying the recursion formula just introduced here to a gen-
eral caterpillar graph one gets the useful recursion formula of ZG for it, as 
demonstrated in Fig. A2. 

G – l  =

G    l  =

G = Cm+n

Cn.

Cn–1
.

Cm+n = Cm Cn + Cm–1 Cn–1

m m+1m–1 m+2 m+n1 ... ...

m m+1m–1 m+2 m+n1 ... ...

m–1 m+2 m+n1 ... ...

Cm

Cm–1

 l

 

Figure A2: Recursion formula of ZG of a caterpillar graph. 

 See Fig. A3 for calculating the ZG value of caterpillar graph C4(5, 4, 2, 3), 
which is composed of path graph P4 and the set of four star graphs, (S5, S4, S2, 
S3), or complete bipartite graphs, (K1,4, K1,3, K1,1, K1,2). Notice that the ZG 
value for Sn+1 or K1,n is n+1 since p(G,0)=1, p(G,1)=n, and p(G,k)=0 for 
k≥2. Then it is straightforward to get 

21X7 + 5X3 = 162. 

For the later discussion, let us calculate the ZG for C5(2, 5, 4, 2, 3) to be 355. 
The readers are encouraged to get this number by themselves.  
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= ++ +

= + + 1 + + 1 + +

= (5    4 +1) (2    3 +1) + (5    3) = 162+ + +

l l ' l"

G G – l G    l

 

Figure A3: Calculation of ZG value of caterpillar graph C4(5, 4, 
2, 3). 

Appendix II: Continuant of Euler  
The continuant polynomial was proposed to be defined recurrently by Euler 
as follows (Graham et al. 1989):  

K0( ) = 1; 

K1(x1) = x1; 

K2(x1,x2) = x1 x2 + 1, 

Kn(x1,x2,…,xn) = xn Kn–1(x1,x2,…,xn–1) + Kn–2(x1,x2,…,xn–2) (A4) 

Among several relations for the continuant the following three will be intro-
duced here. 
(i) Reversible character 

Kn(x1,x2,…,xn) = Kn(xn,…, x2,x1) (A5) 

(ii) Recursive relation 

Kn(x1,x2,…,xn) = x1 Kn–1(x2,x3,…,xn) + Kn–2(x3,x4,…,xn) (A6) 

(iii) Tridiagonal determinantal expression 

  

K n(x1,x2,L,xn) =

x1 1 0 0 L 0

−1 x2 1 0 L 0

0 −1 x3 1 L 0

M M M O M M

0 0 L −1 xn−1 1

0 0 L 0 −1 xn

 (A7) 

Now let us evaluate the following continued fraction  
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[2;5,4,2,3]= 2+ 1

5+ 1

4 + 1

2+ 1
3

 

according to the recipe by Euler. Namely, by using (3) one gets the following 
expression 

[2;5,4,2,3]= K 5(2,5,4,2,3)

K 4 (5,4,2,3)
. 

The problem is now reduced to calculate the two continuants in the denomi-
nator and numerator of the right-hand-side of the above formula. Now ac-
cording to (A6) we have 

K4(5, 4, 2, 3) = 5 K3(4, 2, 3) + K2(2, 3) 

 = 5 [4 K2(2, 3) + K1(3)] + K2(2, 3) 

 = 21 K2(2, 3) + 5 K1(3) 

 = 21 (2 ×3 + 1) + 5 ×3 = 162 = Z4(5, 4, 2, 3) 

and  

K5(2, 5, 4, 2, 3) = 2 K4(5, 4, 2, 3) + K3(4, 2, 3) 

 = 2 ×162 + [4 ×(2 ×3 + 1) + 3] = 355 = Z5(2, 5, 4, 2, 3). 

Then we get  

[2;5,4,2,3]= 355

162
= 2+ 31

162
. 

Compare this manipulation of K’s with that of Fig. A3 at least for the nu-
merator. Euler’s algorithm is forced to execute in one direction either from 
right or left. On the other hand, the algorithm for calculating ZG is free to cut 
the caterpillar graph into half wherever possible and how often as you wish. 
 As already stated in the main text the advantage of our method comes 
from the fact that the concept of ZG is higher than the continuant and more-
over there are so many useful recursion relations for calculating ZG of G for 
arbitrary structures.  
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