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Philosophy of Mathematical Chemistry:  
A Personal Perspective 

Subhash C. Basak 

Abstract: This article discusses the nature of mathematical chemistry, discrete 
mathematical chemistry in particular. Molecules and macromolecules can be 
represented by model objects using methods of discrete mathematics, e.g., 
graphs and matrices. Mathematical formalisms are further applied on the mod-
el objects to distill various quantitative characteristics. The end product of 
such an exercise can be a better understanding of chemistry, the development 
of quantitative scales for qualitative notions of chemistry, or an illumination of 
the structural basis of chemical and biological properties. The aforementioned 
aspects of mathematical chemistry are discussed based on my own practition-
er’s perspective. 

Keywords: Molecular graph, mathematical chemistry, quantitative structure-
activity relationship (QSARs). 

 
 
Ostensibly there is color, ostensibly sweetness, ostensibly bitterness, ac-

tually only atoms and the void.  
(Galen, after Schrödinger 1954, p. 30) 

 
No human inquiry can be called science unless it pursues its path 

through mathematical exposition and demonstration.  
(Leonardo da Vinci, as quoted in Kline 1972, p. 224) 

 
Replying to G.H. Hardy’s suggestion that the number of a taxi (1729) 

was ‘dull’: No, it is a very interesting number; it is the smallest num-
ber expressible as the sums of two cubes in two different ways, the two 

ways being 13 + 123 and 93 + 103.  
(Srinivasa Ramanujan, as quoted in Hardy 1921) 
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1. Introduction: A Brief History of Mathematical and 
Chemical Concepts 
Mathematical concepts have been developed by mankind for a long time. 
During the period of the Rigveda (1700-1100 BC), the Hindus of the Indian 
subcontinent developed Vedic geometry (sulva) and astronomy (jyotisa) in an 
effort to guide matters of day to day necessity (Datta 2004, p. 18). Sacrifice 
(jajna) was the principal religious evocation at that time and each jajna had to 
be performed using an altar possessing a precise size and shape. This gave 
birth to the study of the geometrical nature of objects and resulted over time 
in the formulation of the science of geometry. Vedic astronomy arose out of 
the need of determining the proper time for religious sacrifice. Although 
originally required to address practical day to day problems, these sciences 
outgrew their original purpose and came to be cultivated by practitioners as 
basic research for their own sake. Sulvashastra (the science of geometry) by 
Baudhayana (600 BC), who was anterior to Pythagoras, seems to have the 
knowledge of the theorem which is now popularly attributed to Pythagoras 
(Datta 2004, p. 18). The development of a certain level of mathematical 
knowledge dictated by the material needs of the contemporary society is a 
common phenomenon across all civilizations (Nath & Bag 2004, p. 36). The 
term ganita (the science of calculation) appears frequently in the Vedic litera-
ture (Datta 2004, p. 18). 
 Greek mathematics would usually contain four sections: number theory, 
geometry, music, and astronomy. This division, the quadrivium (the ‘four 
ways’), lasted in the European culture until the end of the Middle Ages. One 
can see bas-reliefs and paintings representing the four branches of the quad-
rivium on the walls or pillars of cathedrals in several places in Europe (Art-
mann 1988, Papadopoulos 2002). Pythagoras (ca. 580-500 BC) initiated a 
tradition that persists to the present day – the use of mathematics in the 
characterization of the natural world. He and his followers are thought to be 
the first to conduct scientific investigations on the nature of sound. Pythago-
ras observed the harmony of the sound of hammers in a blacksmith’s forge, 
and then discovered that the weight of the hammers that produced pleasant 
sounds were in ratios of simple whole numbers (Caleon & Ramanathan 
2008). Pythagoras and the Pythagoreans went much further, relating their 
notion of musical harmony to the larger order in the structure of the cosmos, 
believing that the arrangement of planets follows a musical progression, with 
the ratio of their distances also being expressible in simple whole numbers 
(Dampier 1961, p. 17). Pythagoreans also believed that only persons pos-
sessing special gifts could hear the ‘music of the spheres’. Incidentally, di-
verse mathematical concepts have been used in understanding the basis of 
painting (Atalay 2006, p. 26), Western music (Helmholtz 1964, p. 234) as 
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well as the ragas of the Indian classical music (Balasubramainan 2002, Tara-
keswara & Prasad 2011). The Pythagorean view is tantamount to saying that 
the universe is quantized (Caleon & Ramanathan 2008). 
 In the realm of chemistry, both the Greek thinkers (Trinajstić 1997, p. 
17) and the Vedic Hindus, particularly those involved in the development of 
the Sāṁkhya-Pātañjala system (Ray 2004, p. 136), discussed the concept of 
the atom mainly based on philosophical speculation. The Sāṁkhya-Pātañjala 
system of philosophy described five elements (bhūtas): earth (ksiti), water 
(ap), fire (tejas), air (vāyu), and space or ether (ākāśa). Each of these ele-
ments was thought to be made up of more fundamental ultimate units, each 
unit being called an anu (atom) which, in turn, is made from intra-atomic 
particles termed tanmatras (Ray 2004, p. 136). However, the concept of the 
five elements as the constituents of matter is much older, occurring in the 
literature of the āranyakas and the Upanishads around the eighth century BC 
(Ray 2004, p. 138). The conceptions of atoms developed by the Vedic sage 
Kanad and the Greek philosopher Democritus have strong resemblance with 
one another. Although these were useful chemical theories, they remained in 
the realm of pure speculation and did not stimulate much research in the 
empirical physical, chemical, or biological sciences. Alchemy was practiced 
around the world from about 300 BC to the second part of the seventeenth 
century (Trinajstić 1997, p. 17). Two principal objectives of the alchemists 
were: (a) To make gold from base metals, and (b) To find the elixir of life. 
Not much rational or mathematical theory was developed out of alchemic 
experimentation. The modern science of chemistry substituted the alchemic 
approach at the beginning of the second half of the seventeenth century. 
Various scientists contributed to this transition both by the development of 
theoretical frameworks and by experimental methods of validation or refuta-
tion of conjectures, the major players being Boyle, Lavoisier, Avogadro, 
Wöhler, Frankland, Berzelius, Kekulé, Brown, and Fraser. 
 The history of the interaction between mathematics and chemistry has 
been reviewed by Trinajstić (1997, p. 17). Plato associated with each funda-
mental elements of nature (water, air, earth, and fire) a polyhedron: tetrahe-
dron (fire), octahedron (air), hexahedron (earth), and icosahedron (water). 
In modern times, Cayley (1857) developed the mathematical formalism of 
calculating the number of possible alkane isomers having empirical formula 
CnH2n+2, and of alkyl radicals CnH2n+1, with the value of n ranging from 1 to 
13. It was probably the first attempt of calculating the number of related 
substances arising out the same composition (empirical formula) using math-
ematical concepts. One important milestone in the early development of 
mathematical chemistry came from the research of Sylvester (1878, p. 64) 
who used the term chemicograph for what is now known as chemical graphs. 
Trinajstić (1997, p. 29) has pointed out that Sylvester’s work was probably 
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“inspired by Crum Brown’s graphic notation”. The advent of modern math-
ematical chemistry probably began with the seminal work of Harry Wiener 
(1947). For an excellent review of the major aspects of modern mathematical 
chemistry, see Restrepo & Villaveces 2012. 

2. Mathematical Modeling of Chemical Structure: Rep-
resentation and Characterization 
As pointed out by Schummer (1998), one important aspect of the cognitive 
architecture of chemistry is the theoretical foundation through the chemical 
theory of structural formulas. Representation of molecules by different 
structural models, e.g., a graph, a stick-and-ball model, three dimensional data 
sets, use different theoretical frameworks to derive useful chemical infor-
mation (Basak et al. 1991). In mathematical chemistry, two crucial steps are: 
(a) abstraction of the model object and (b) derivation of the mathematical 
model (Basak et al. 1991, Bunge 1973). The model object corresponding to a 
chemical substance represents the salient feature of its structure. The struc-
ture of an assembled entity, e.g., a molecule, is the pattern of relationships 
among its constituent parts. But the term ‘molecular structure’ represents a 
set of nonequivalent and probably disjoint concepts (Primas 1983). There is 
no reason to believe that when we discuss diverse topics – e.g., chemical syn-
thesis, reaction rates, spectroscopic transitions, reaction mechanisms, and ab 
initio calculations – the different meanings we attach to the single term ‘mo-
lecular structure’ originate from the same fundamental concept. This has 
been termed “the molecular structure conundrum” (Weininger 1984). In the 
context of molecular science, the various representations of molecular struc-
ture, e.g., ‘classical’ valence-bond representations, various chemical graph-
theoretic representations, ball and stick models, minimum energy confor-
mations, or symbolic representation of chemical species by Hamiltonian 
operators, are model objects (Basak et al. 1991, Bunge 1973) derived through 
different abstractions from the same chemical reality. In each instance, the 
equivalence class (the concept or model of molecular structure) is generated 
by selecting certain aspects while ignoring other unique properties of those 
objects. This explains the plurality of the concepts of molecular structure and 
their autonomous nature, the word ‘autonomous’ being used in the same 
sense that one concept is not logically derived from the other. 
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3. Representation of Molecular Structure 
Quantum chemistry and mathematical chemistry are two major methods of 
carrying out mathematical modeling on chemical structure. As is well known, 
for a single molecule one can use different levels of theories for quantum 
chemical calculations (Basak et al. 2003a,b). We will not discuss quantum 
chemical methods here. Instead, we will deal with concepts and methods of 
mathematical chemistry which deals with the representation and characteriza-
tion of molecular structure using methods derived from discrete mathemat-
ics, e.g., chemical graph theory and topology (Balaban 1976, Basak & Mills 
2009, Kier & Hall 1986, 1999, Trinajstić 1992). 
 A graph, G = [V, R], is defined as an ordered pair consisting of two sets 
V and R, where V represents a finite nonempty set of points, and R is a bina-
ry relation defined on the set V (Harary 1969). The elements of V are called 
vertices and the elements of R, also symbolized by E, are called edges. In 
graph theoretical models of molecular structure, i.e. molecular graphs, V 
represents the set of atoms and E usually depicts the collection of covalent 
bonds in the molecule (Trinajstić 1992). It should be noted, however, that 
the set E does not need to be limited to covalent bonds. Elements of E may 
symbolize any type of bond, viz., covalent, ionic, or hydrogen bonds, etc. It 
was emphasized by Basak et al. (1988a) that weighted pseudographs consti-
tute a very versatile model for the representation of a wide range of chemical 
species. A molecular graph may contain either all atoms present in the empir-
ical formula or only non-hydrogen atoms. Hydrogen-filled graphs are prefer-
able to hydrogen-suppressed graphs when hydrogen atoms are involved in 
critical steric or electronic interactions. The hydrogen filled (G1) and hydro-
gen-suppressed (G2) graphs of acetamide are given in Fig. 1. 

 

Figure 1: The hydrogen-filled graph (G1) and labeled hydrogen-
suppressed graph (G2) of acetamide; the numbers in parenthe-
sis, (1) and (2), represent the bond orders of the corresponding 
bonds. 
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Different types of graphs can be used to represent chemical species, e.g., di-
rected graphs, undirected graphs, linear graphs, and multigraphs. Here we 
consider only connected and undirected graphs to represent molecular struc-
tures. Such graphs are often called molecular graphs. 
 Various levels of chemical information can be coded in molecular graphs. 
At the most fundamental level, topostructural models contain information 
regarding only the connectivity of atoms without any consideration of the 
precise chemical nature of vertices (atoms) or edges (bonds). For example, 
the distance matrix, D(G2), of the molecular graph G2 (vide infra) represents 
only the pattern of connectivity of atoms in the molecule without any con-
sideration of the type of atoms or their bonding patterns. Topochemical mod-
els of molecules, on the other hand, are weighted molecular graphs in which 
one assigns chemically meaningful weights to the vertices and edges (Basak et 
al. 1988a, 1997). For example, the electrotopological state indices (Hall 2012, 
Kier & Hall 1999), neighborhood complexity indices (Basak 1987), and vari-
able connectivity indices (Randić & Basak 2001) fall in the latter category of 
models. 

4. Characterization of Molecular Structure by Mathe-
matical Formalisms 
Molecular graphs can be represented by various types of matrices (Trinajstić 
1992, Janežič et al. 2007). The adjacency and distance matrices have been used 
in mathematical chemistry for many purposes. The distance matrix D(G2) for 
the labeled graph G2 in Figure 1 may be written as follows: 
 

  (1) (2) (3) (4) 

 1  0  1  2  2 

D(G2) = 2  1  0  1  1 

 3  2  1  0  2 

 4  2  1  2  0 

 
Hosoya (1971) coined the term topological index (TI) for numerical de-
scriptors derived from matrices of molecular structures. As shown by Ho-
soya, the first topological index, the Wiener index W (Wiener 1947), can be 
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calculated from the distance matrix D(G) of a hydrogen-suppressed graph G 
as the sum of entries in the upper triangular submatrix: 

 

where gh is the number of unordered pairs of vertices whose distance is h. 
 A number of software is now available for the calculation of topological 
indices (TIs) of molecules (Basak et al. 1988b, Semichem 2012, Hall 1996, 
Todeschini 2004). Graph theoretical methods have been used for the charac-
terization and discrimination of structures (Balasubramanian & Basak 1998, 
Randić 1984, Raychaudhury et al. 1984), the prediction of property, bioactivi-
ty, or toxicity of small molecules like drugs and environmental pollutants 
(Basak 2010), the characterization of macromolecular sequences like DNA 
(Nandy et al. 2006, Randić et al. 2000), the quantification of proteomics maps 
(Basak & Gute, 2008, Randić et al. 2001), the representation and mathemati-
cal characterization of proteins (Ghosh & Nandy 2011, Randić et al. 2011), 
the understanding of the properties of specific protein sequences related to 
the virulence of pandemic Bird Flu (Ghosh et al. 2009), the prediction of 
biochemical modes of action (MOA) of chemicals (Basak et al. 1998), the 
structure based clustering of large combinatorial libraries of structures (Basak 
et al. 2010), the mathematical characterization of chirality of molecular struc-
tures (Natarajan & Basak 2011), and understanding the structural basis of 
alterations in mechanisms of drug-target interaction arising out of the devel-
opment of drug resistance in microbes (Basak et al. 2011), to mention just a 
few applications. 

5. Quantification of Qualitative Chemical Concepts 
Techniques of mathematical chemistry have been used to quantitatively char-
acterize qualitative concepts like chirality, branching, complexity, etc. For 
chirality, readers are referred to our recent review (Natarajan & Basak 2011). 
Here we discuss only two additional examples of the applications of methods 
of mathematical chemistry in the quantification of qualitative ideas: (a) mo-
lecular branching and (b) complexity. 

5.1 Molecular Branching 

For many physical properties, e.g., hydrophobicity, alteration of the degree of 
branching in the structure brings about a definite change in the magnitude of 
the property. Many numerical graph invariants can be used for the quantifica-
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tion of branching (Bonchev & Trinajstić 1977, Randić 1975, Raychaudhury et 
al. 1984, Wiener 1947) because their magnitudes are sensitive to the branch-
ing patterns in the structure. One well known example of the quantification 
of the notion of molecular branching is Randić’s (1975) connectivity index 
which is an invariant defined on the simple graph (topostructural) model of 
alkanes. 
 Randić’s connectivity index, 1χ , is defined as: 

 

The various branching indices mentioned above and many others known in 
the literature transform qualitative and relative notions, like ‘more or less 
branched’, into a quantitative numerical scale, although the numerical order-
ing of the same set of molecules, e.g. the group of isomeric eighteen octanes, 
may vary from one index to another. 

5.2 Molecular Complexity 

Complexity is an intrinsic property of all natural and man-made systems. 
Information theoretic formalisms have been used in the quantification of 
complexity of chemical systems as well as of networks (Bonchev 2009, p. 
4820; Dehmer 2008). 
 The structure of an assembled entity is the pattern of relationships among 
its constituent parts. Another important notion regarding structure is that it 
presents to us a message that encodes certain amount of information 
(Bonchev 2009, p. 4820). In chemistry, given a set of molecules, chemists 
often talk about their relative complexity, which is often a qualitative idea. 
But various authors over the past four decades have developed quantitative 
measures of atomic and molecular complexity based on information theoretic 
invariants of graphs corresponding to them (Bonchev & Trinajstić 1977, 
Raychaudhury et al. 1984, Basak 1987, Bonchev 1983, 2009, p. 4820). 
 Information theoretic invariants are calculated by the application of in-
formation theory to chemical graphs. An appropriate set A of n elements is 
derived from a molecular graph G depending upon certain structural charac-
teristics. On the basis of an equivalence relation defined on A, the set A is 
partitioned into disjoint subsets Ai of order ni: 

 

A probability distribution is then assigned to the set of equivalence classes 
A1, A2,…, Ah with p1, p2,…, ph, where pi = ni/n is the probability that a ran-
domly selected element of A will occur in the ith subset. 
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 The mean information content (IC) of an element in A is defined by 
Shannon’s relation (Shannon 1948, Rashevsky 1955, p. 229): 

 

The logarithm is taken at base 2 for measuring the information content in 
bits. The total information content of the set A is then n times IC. 
 It is to be emphasized that information content of a graph G is not 
uniquely defined. It depends on the way the set A is derived from G as well as 
on the equivalence relation(s) which partition A into disjoint subsets Ai. So, 
for the same molecular graph (structure), different methods may give differ-
ent numerical measures of information theoretic complexity. 

6. Why and How Structure Is Related to Function? 
Chemistry is a theoretical-cum-experimental science. Alchemists were inter-
ested only in the experimental approach. Trinajstić (1997, p. 17) has given an 
excellent overview of the history of the emergence of modern chemistry 
from alchemy describing the complementary role of theory and experiment 
as well as the role of key players in this process. This transition happened 
when scientists combined chemical theory with experiments in such a way 
that a conjecture could be validated or falsified (Popper 1992). 
 Chemists often discuss the relationship between structure and property 
or reactivity using the IF-THEN type of structural rules. But it was not often 
recognized that the two-dimensional chemical structure so familiar to the 
chemists is a mathematical object which can be manipulated using mathemat-
ical formalisms. Mathematical chemistry derived from molecular graph theo-
ry and information theory made an enormous progress starting at the second 
half of the twentieth century. The relation between structure and function is 
guided by the ‘structure-property similarity principle’, which states that simi-
lar structures usually have similar functions or properties (Johnson et al. 
1988). When one represents a molecule using a small number of structural 
attributes, intuitive IF-THEN rules can serve the purpose of relating struc-
ture to function. But when the attributes or descriptors are numbered in the 
hundreds or thousands, an intuitive approach of relating structure to func-
tion is not very effective. As noted by Bertrand Russell: 

Intuition, in fact, is an aspect and development of instinct, and, like all in-
stincts, is admirable in those customary surroundings which have moulded the 
habits of the animal in question, but totally incompetent as soon as the sur-
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roundings are changed in a way which demands some non-habitual mode of 
action. (Russell 1950)  

Therefore, robust models derived from proven methods like multivariate 
statistics (Hawkins et al. 2000, 2003), partial order theory (Restrepo et al. 
2011) need to be applied in understanding the structural basis of property, 
activity and reactivity of molecules using the plethora of mathematical de-
scriptors that are available from contemporary mathematical chemistry and 
computer algorithms and software. 

7. Conclusion 
Currently, mathematical chemistry is an emerging field in which both basic 
research and applications are progressing simultaneously. Major develop-
ments in the modern trends of the field began in the second half of the twen-
tieth century. This research was fueled mainly by two important factors: (a) 
the development of a plethora of new ideas for the representation and charac-
terization of molecular structure using mathematics, and (b) applications of 
descriptors formulated by mathematical chemists to solve practical problems 
of combinatorial chemistry, new drug discovery, environmental protection, 
chemoinformatics, and bioinformatics. Whereas mathematical modeling, 
including mathematical chemistry, strives to find general principles to explain 
natural phenomena, a large part of chemistry involves studies of chemical 
problems in specific situations. As pointed out by K. Fukui: 

Even the same atoms of the same element, when they exist in different mole-
cules, exhibit different behaviors. The chemical symbol H even seems to signi-
fy atoms of a completely different nature. In chemistry, this terrible individu-
ality should never be avoided by ‘averaging’, and, moreover, innumerable 
combinations of such atoms form the subject of chemical research, where it is 
not the ‘whole assembly of compounds of different kinds but each individual 
kind of compounds’ that is of chemical interest. On account of this formida-
ble complexity, chemistry possesses inevitably one aspect of depending on the 
analogy through experience. This is in a sense said to be the fate allotted to 
chemistry, and the source of a great difference in character from physics. (Fu-
kui (1982) 

On the other hand, graph theory, which constitutes a major basis of mathe-
matical chemistry, is a subject of a very general nature. As indicated by Frank 
Harary (1986), “It is because of this general nature that graph-theoretic 
methods have been used for characterizing structure in such diverse areas as 
theoretical physics, chemistry, biological and social sciences, engineering, 
computer science and linguistics.” Applications of concepts derived from 
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chemical graph theory and mathematical chemistry to a diversity of prob-
lems, e.g., characterization of structures of small molecules, quantification of 
DNA and protein sequences, numerical characterization of proteomics maps 
understanding the evolutionary changes in chemical biological interaction in 
the development of drug resistance, may be looked upon as an “isomorphism 
of phenomena in different fields of science” at the very fundamental level (Von 
Bertalanffy 1950). Balaban (2005) described how mathematics and chemistry 
have interacted fruitfully for the benefit of both. Rouvray, the founder of the 
Journal of Mathematical Chemistry, wrote the following in the Editorial 
Foreword of the journal:  

Cross-fertilization of mathematical theory with chemical concepts has been 
responsible for the growth of major areas of chemistry over the past two cen-
turies. The ongoing mathematization of chemistry shows no sign of abating 
and has in fact gained significantly in pace in recent years. This is a process we 
welcome and one that we view as a natural concomitant of the evolution of 
chemistry as a whole. We believe that the future vitality of chemistry is very 
much linked to the cultivation of new mathematical models and techniques 
which can be used to characterize chemical systems. (Rouvray 1987) 

It is clear from the above that mathematical chemistry has made and will 
continue to make significant contributions to our understanding of chemis-
try via the application of mathematical concepts on chemical systems. 
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